Перед вами три коробки, в какой из них находится приз


Оглавление (нажмите, чтобы открыть):

Перед вами три коробки, в какой из них находится приз?

ч ПДОПК ЙЪ ФТЕИ ЛПТПВПЛ МЕЦЙФ РТЙЪ, ДЧЕ ДТХЗЙЕ ЛПТПВЛЙ РХУФЩЕ. чЩ ОЕ ЪОБЕФЕ, Ч ЛБЛПК ЙЪ ЛПТПВПЛ ОБИПДЙФУС РТЙЪ, Б ЧЕДХЭЙК ЪОБЕФ. чЩ ДПМЦОЩ РПЛБЪБФШ ОБ ПДОХ ЙЪ ЛПТПВПЛ, Ч ЛПФПТПК РП чБЫЕНХ НОЕОЙА ОБИПДЙФУС РТЙЪ. рПУМЕ ЬФПЗП ЧЕДХЭЙК ПФЛТЩЧБЕФ ПДОХ ЙЪ ДЧХИ ПУФБЧЫЙИУС ЛПТПВПЛ. фБЛ ЛБЛ ПО ОЕ ИПЮЕФ УТБЪХ ПФДБЧБФШ РТЙЪ, ПО ПФЛТЩЧБЕФ РХУФХА ЛПТПВЛХ. рПУМЕ ЬФПЗП чБН РТЕДМБЗБЕФУС ПЛПОЮБФЕМШОП ЧЩВТБФШ ЛПТПВЛХ. нПЦЕФЕ МЙ чЩ ЧЩЙЗТБФШ РТЙЪ У ЧЕТПСФОПУФША, ВПМШЫЕК 1/2?

рПДУЛБЪЛБ

рПЛБЪБЧ ОБ ЛПТПВЛХ Ч РЕТЧЩК ТБЪ, чЩ УЛПТЕЕ ЧУЕЗП (У ЧЕТПСФОПУФША 2/3) ПЫЙВМЙУШ.

тЕЫЕОЙЕ

чЩ НПЦЕФЕ ЧЩЙЗТБФШ РТЙЪ У ЧЕТПСФОПУФША 2/3. рХУФШ чЩ Ч РЕТЧЩК ТБЪ РПЛБЪБМЙ ОБ ЛПТПВЛХ A, Б ЧЕДХЭЙК ПФЛТЩМ РХУФХА ЛПТПВЛХ B. фПЗДБ ОХЦОП ЧЩВЙТБФШ ФТЕФША ЛПТПВЛХ (Ф. Е. ЛПТПВЛХ, ПФМЙЮОХА ПФ A Й B). дЕКУФЧЙФЕМШОП, чЩ ПЫЙВЕФЕУШ ФПМШЛП ЕУМЙ РТЙЪ ОБИПДЙМУС Ч ЛПТПВЛЕ A, ОП ЙЪОБЮБМШОП ОХЦОП УЮЙФБФШ, ЮФП РТЙЪ ОБИПДЙФУС Ч ЛБЦДПК ЙЪ ЛПТПВПЛ У ЧЕТПСФОПУФША 1/3.

йУФПЮОЙЛЙ Й РТЕГЕДЕОФЩ ЙУРПМШЪПЧБОЙС

рТПЕЛФ ПУХЭЕУФЧМСЕФУС РТЙ РПДДЕТЦЛЕ Й .

Парадокс Монти Холла

Итак, представьте, что вы участвуете в телешоу. Перед вами три одинаковых двери. За одной из них (неизвестно, за какой) скрывается автомобиль. Если угадаете нужную дверь, он ваш. За двумя другими дверями спрятано по козлу. Если не угадаете автомобиль, придется забирать козла, а у вас квартира маленькая и вообще.

Правила игры простые. Вы тыкаете пальцем в одну из дверей (ну, например, в первую).

Затем ведущий телешоу Монти Холл (это такой заграничный Якубович), которому точно известно, где находится автомобиль, открывает одну из оставшихся дверей – причем заведомо ту, за которой скрывается козел (пусть этой дверью оказалась дверь номер два). И после этого ведущий предлагает вам изменить свое решение и выбрать другую дверь (в нашем случае дверь номер три).

Внимание, вопрос: повысятся ли шансы выиграть автомобиль, если вы согласитесь открыть не первую дверь, а третью?

Подумайте хотя бы полминуты. Если у вас был курс теории вероятности, вспомните его.

Итак, что вы решили?

Правильный ответ: если вы измените свое решение и откроете третью дверь, ваши шансы выиграть возрастут ровно вдвое.

Не верите? Никто не верит. Поэтому эта задачка и называется парадоксом.

Ладно, давайте разберемся сами.

Вы выбрали одну из дверей (пусть дверь номер один). Разобьем двери на два множества: множество А, куда входит выбранная вами дверь, и множество В, в которое входят оставшиеся двери. Вероятность того, что автомобиль попал во множество А, равна 1 /3. Вероятность того, что он попал во множество В, равна 2 /3.

Если бы вам предложили вместо множества А выбрать всё множество В (открыть сразу обе двери №2 и №3), вы бы, конечно, согласились: ведь во множестве В вероятность найти авто вдвое выше.

Рассмотрим множество В пристальнее. Вы абсолютно точно знаете, что во множестве В скрывается, как минимум, один козел. Вы знаете, что во множестве В, возможно, скрывается автомобиль. Если Монти Холл откроет одну из дверей множества В и продемонстрирует вам козла, никакой новой информации о множестве В вы не получите: вы по-прежнему будете знать, что во множестве В есть, как минимум, один козел и, возможно, один автомобиль.

Таким образом, после открытия козлиной двери ничего не изменилось, и множество В по-прежнему привлекательнее с точки зрения выигрыша (см. предыдущий абзац). Выбрав неоткрытую дверь множества В, вы получаете вероятность выигрыша 2 /3 против вероятности 1 /3 для множества А.

По-прежнему непонятно? Ничего страшного, я одной девушке это полчаса объяснял, вспотел весь. Как потом оказалось, она считала, что за каждой дверью можно найти автомобиль с вероятностью 1 /2 (50%, что найду, и 50%, что не найду). Как в том анекдоте про вероятность встретить мамонта на улице.


Ладно, если подходить к решению добросовестно, нужно расписать несколько формул.

Итак, у нас два множества: А (с выбранной на первом шаге дверью №1) и В (с двумя оставшимися дверями).

Вероятности выигрыша для дверей №2 и №3 описываются следующими формулами:

Где 1 /2 — условная вероятность выигрыша для данной двери при условии, что игрок изначально выбрал дверь без автомобиля.

Ведущий, открывая проигрышную дверь (пусть дверь №2), меняет условные вероятности с 1 /2 и 1 /2 на 0 и 1.

Как мы видим, вероятность найти автомобиль за дверью №3 равна 2 /3. Таким образом, после открытия двери с козлом игроку всегда выгодно менять первоначальный выбор.

Формулировка «парадокса» Монти Холла:

Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трёх дверей. За одной из дверей находится автомобиль, за двумя другими дверями — козы. Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где — козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза. После этого он спрашивает вас, не желаете ли вы изменить свой выбор и выбрать дверь номер 2. Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор?

Решение. Сразу же заметим, данная задача никакого парадокса не содержит. Обычная задача (начальный уровень) на формулу Байеса, которая вытекает из определения условной вероятности.

Обозначим через А, событие – вы выиграли авто.

Выдвигаем две гипотезы: H1– вы не меняете дверь, и H2 — меняете дверь.

P(H1)= 1/3 – априорная (априорная – значит до проведения опыта, ведущий еще не открывал дверь) вероятность гипотезы, что вы меняете дверь.

P(H2)= 2/3 – априорная вероятность гипотезы, что вы меняете дверь.

PH1(A) — условная вероятность, что вы угадаете дверь, за которой находится авто, если произошла первая гипотеза H1

PH2(A) — условная вероятность, что вы угадаете дверь, за которой находится авто, если произошла вторая гипотеза H2

Находим вероятность события А, если произошла гипотеза H1 (вероятность того, что вы выиграли автомобиль, если не меняли дверь):

Находим вероятность события А, если произошла гипотеза H2 (вероятность того, что вы выиграли автомобиль, если меняли дверь):

Таким образом, участнику следует изменить свой первоначальный выбор — в этом случае вероятность его выигрыша будет равна 2 ⁄3.

Статистическая проверка парадокса Монти Холла

Здесь: «стратегия 1» — не менять выбор, «стратегия 2» — изменить выбор. Теоретически, для случая с 3-мя дверями, распределение вероятностей — 33,(3)% и 66,(6)%. При численной симуляции должны бы получаться похожие результаты.

Перед вами три коробки, в какой из них находится приз?

Математика случая. История теории вероятностей

Стенограмма и видеозапись лекции доктора физико-математических наук, ведущего научного сотрудника Математического института имени Стеклова, ведущего научного сотрудника ИППИ РАН, профессора факультета математики Высшей школы экономики, директора исследований Национального центра научных исследований во Франции (CNRS) Александра Буфетова, прочитанной в рамках цикла «Публичные лекции «Полит.ру»» 6 февраля 2014 г.


Иллюзия закономерности: почему случайность кажется неестественной

Наши представления о случайном, закономерном и невозможном часто расходятся с данными статистики и теории вероятностей. В книге «Несовершенная случайность. Как случай управляет нашей жизнью» американский физик и популяризатор науки Леонард Млодинов рассказывает о том, почему случайные алгоритмы выглядят так странно, в чем подвох «рандомной» тасовки песен на IPod и от чего зависит удача биржевого аналитика. «Теории и практики» публикуют отрывок из книги.

Детерминизм — общенаучное понятие и философское учение о причинности, закономерности, генетической связи, взаимодействии и обусловленности всех явлений и процессов, происходящих в мире.

Бог — это статистика

Дебора Нолан, профессор статистики в Университете Калифорнии в Беркли, предлагает своим студентам выполнить очень странное на первый взгляд задание. Первая группа должна сто раз подбрасывать монетку и записывать результат: орёл или решка. Вторая должна представить, что подбрасывает монетку – и тоже составить список из сотни «мнимых» результатов.

Что такое детерминизм

Если известны начальные условия системы, можно, используя законы природы, предсказать ее конечное состояние.

Задача о разборчивой невесте

Можно ли из одной точки в пространстве добраться до другой? Древнегреческий философ Зенон Элейский считал, что перемещение невозможно осуществить вообще, но как он это аргументировал? Колм Келлер расскажет о том, как разрешить знаменитый парадокс Зенона.

Парадоксы бесконечных множеств

Представьте отель с бесконечным числом номеров. Приезжает автобус с бесконечным числом будущих постояльцев. Но разместить их всех — не так-то просто. Это бесконечная морока, а гости бесконечно уставшие. И если справиться с задачей не удастся, то можно потерять бесконечно много денег! Что же делать?

Зависимость роста ребенка от роста родителей

Молодым родителям, конечно, хочется знать, какого роста будет их ребенок, став взрослым. Математическая статистика может предложить простую линейную зависимость для приближен ной оценки роста детей, исходя только из роста отца и матери, а также указать точность такой оценки.

Парадокс Монти Холла — наверно самый известный парадокс в теории вероятностей. Существует масса его вариаций, например, парадокс трёх узников. И существует масса толкований и объяснений этого парадокса. Но здесь, я хотел бы дать не только формальное объяснение, но показать «физическую» основу того, что происходит в парадоксе Монти Холла и ему подобных.

Мастер Йода рекомендует:  Оптимизация кода для поисковых систем

Формулировка парадокса Монти Холла

Классическая формулировка такова:

«Вы участник игры. Перед вами три двери. За одной из них приз. Ведущий предлагает вам попытаться угадать, где приз. Вы указываете на одну из дверей (наугад).

Формулировка парадокса Монти Холла

Ведущий знает, где на самом деле находится приз. Он, пока, не открывает ту дверь, на которую вы показали. Но открывает вам ещё одну из оставшихся дверей, за которой нет приза. Вопрос в том, сто́ит ли вам изменить свой выбор, или остаться при прежнем решении?»

Оказывается, что если вы просто измените выбор, то ваши шансы выиграть возрастут!

Парадоксальность ситуации очевидна. Кажется, что всё происходящее случайно. Нет никакой разницы, поменяете вы своё решение или нет. Но это не так.

«Физическое» объяснение природы этого парадокса

Давайте, сперва, не будем вдаваться в математические тонкости, а просто не предвзято посмотрим на ситуацию.


В этой игре вы лишь сперва делаете случайный выбор. Потом ведущий сообщает вам дополнительную информацию, которая и позволяет вам увеличить свои шансы на победу.

Каким образом ведущий сообщает вам дополнительную информацию? Очень просто. Обратите внимание, что он открывает не любую дверь.

Давайте, для простоты (хоть в этом и есть элемент лукавства), рассмотрим более вероятную ситуацию: вы показали на дверь, за которой нет приза. Тогда, за одной из оставшихся дверей приз есть. То есть, у ведущего нет выбора. Он открывает вполне определённую дверь. (На одну указали вы, за другой есть приз, остаётся только одна дверь, которую может открыть ведущий.)

Именно в этот момент осмысленного выбора, он и сообщает вам информацию, которой вы можете воспользоваться.

В данном случае, использование информации заключается в том, что вы меняете решение.

Кстати, ваш второй выбор уже тоже не случаен (вернее, не на столько случаен, как первый выбор). Ведь вы выбираете из закрытых дверей, а одна уже открыта и она не произвольная.

Собственно, уже после этих рассуждений у вас может появиться ощущение, что лучше поменять решение. Это действительно так. Давайте покажем это более формально.

Более формальное объяснение парадокса Монти Холла

На самом деле ваш первый, случайный, выбор разбивает все двери на две группы. За той дверью, которую выбрали вы приз находится с вероятностью 1/3, за двумя другими — с вероятностью 2/3. Теперь ведущий вносит изменения: он открывает одну дверь во второй группе. И теперь вся вероятность 2/3 относится только к закрытой двери из группы из двух дверей.

Понятно, что теперь вам выгодней поменять своё решение.

Хотя, конечно, у вас остаётся шанс проиграть.

Тем не менее смена выбора увеличивает ваши шансы на выигрыш.

Парадокс Монти Холла

Парадокс Монти Холла — вероятностная задача, решение которой (по мнению некоторых) противоречит здравому смыслу. Формулировка задачи:

Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трех дверей. За одной из дверей находится автомобиль, за двумя другими дверями — козы.
Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где — козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза.

Парадокс Монти Холла. Самая неточная математика

После этого он спрашивает вас, не желаете ли вы изменить свой выбор и выбрать дверь номер 2.
Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор? [wiki]

При решении задачи часто ошибочно полагают что два выбора являются независимыми и, следовательно, вероятность при изменении выбора не изменится. На самом деле это не так, в чём можно убедиться вспомнив формулу Байеса или посмотрев на результаты симуляции ниже:

Здесь: «стратегия 1» — не менять выбор, «стратегия 2» — изменить выбор. Теоретически, для случая с 3-мя дверями, распределение вероятностей — 33,(3)% и 66,(6)%. При численной симуляции должны бы получаться похожие результаты.

Ссылки

Парадокс Монти Холла – задача из раздела теории вероятности, в решении которой просматривается противоречие здравому смыслу.

История возникновения[править | править вики-текст]

В конце 1963 года в эфир вышло новое ток-шоу под названием «Let’s Make a Deal» («Давайте договоримся»). По сценарию викторины зрители из аудитории получали призы за правильные ответы, имея шанс приумножить их, делая новые ставки, но рискуя имеющимся выигрышем. Основателями шоу являлись Стефан Хатосу и Монти Холл, последний из которых стал его неизменным ведущим на многие годы.


Одним из заданий для участников стал розыгрыш Главного приза, который был расположен за одной из трех дверей. За двумя оставшимися находились поощрительные призы, в свою очередь ведущий знал порядок их расположения. Участнику необходимо было определить выигрышную дверь, поставив на кон весь свой выигрыш за шоу.

Когда угадывающий определялся с номером, ведущий открывал одну из оставшихся дверей, за которой находился поощрительный приз, и предлагал игроку поменять первоначально выбранную дверь.

Формулировки[править | править вики-текст]

Как конкретную задачу, парадокс впервые сформулировал Стив Селвин (Steve Selvin) в 1975 году, отправивший в журнал The American Statistician («Американский статистик»), и ведущему Монти Холлу, вопрос: изменятся ли шансы участника выиграть Главный приз, если после открытия двери с поощрительным он поменяет свой выбор? После этого случая появилось понятие «Парадокс Монти Холла».

В 1990 была в Parade Magazine (Журнал «Парад») опубликована самая распространенная версия парадокса с примером:

«Представьте себя на телеигре, где нужно отдать предпочтенье одной из трех дверей: за двумя из них козы, а за третьей — автомобиль. Когда Вы совершите выбор, предположив, например, что выигрышная дверь номер один, ведущий открывает одну из оставшихся двух дверей, например, номер три, за которой коза. Затем Вам дается шанс изменить выбор на другую дверь? Можно ли увеличить шансы выиграть автомобиль, если поменять свой выбор с двери номер один на дверь номер два?»

Эта формулировка является упрощенным вариантом, т.к. остается фактор влияния ведущего, который точно знает, где автомобиль и заинтересован в проигрыше участника.

Чтоб задача стала сугубо математической, необходимо исключить человеческий фактор, введя открытие двери с поощрительным призом и возможность изменить первоначальный выбор как неотъемлемые условия.

Решение[править | править вики-текст]

При сравнении шансов на первый взгляд изменение номера двери не даст никаких преимуществ, т.к. все три варианта имеют шанс на выигрыш 1/3 (ок. 33,33% на каждую из трех дверей). При этом открытие одной из дверей никак не отразится на шансах двух оставшихся, чьи шансы станут 1/2 к 1/2 (50% на каждую из двух оставшихся дверей). В основу такого суждения ложится суждение, что выбор двери игроком и выбор двери ведущим – два независимых события, не влияющих одно на другое. В действительности необходимо рассматривать всю последовательность событий как единое целое. В соответствии с теорией вероятности, у первой выбранной двери шансы с начала и до конца игры неизменно 1/3 (ок.33,33%), а у двух оставшихся в сумме 1/3+1/3 = 2/3 (ок. 66,66%). Когда открывается одна из двух оставшихся дверей, ее шансы становятся 0% (за ней спрятан поощрительный приз), и как результат шансы закрытой невыбранной двери составят 66,66%, т.е. в два раза больше, чем у выбранной первоначально.

Для облегчения понимания результатов выбора можно рассмотреть альтернативную ситуацию, в которой количество вариантов будет больше, например — тысяча. Вероятность выбрать выигрышный вариант составит 1/1000 (0,1%). При условии, что в последствии из оставшихся девятьсот девяносто девяти вариантов будут открыты девятьсот девяносто восемь неверных, становится очевидно, что вероятность одной оставшейся двери из девятьсот девяносто девяти невыбранных выше, чем у единственной, выбранной вначале.

Упоминания[править | править вики-текст]

Встретить упоминание Парадокса Монти Холла можно в «Двадцать одно» (фильма Роберта Лукетича), «Недотёпа» (романе Сергея Лукьяненко), телесериале «4исла» (телесериал), «Загадочное ночное убийство собаки» (повести Марка Хэддона), «XKCD» (комикс), «Разрушители легенд» (телешоу).

Задача на логику: парадокс Монти Холла

Включаем смекалку и вспоминаем теорию вероятности.

Простой задачку точно не назовешь, но если не торопиться и разложить логическую цепочку, то шансы на правильный ответ резко возрастут! Итак, пробуем?

Задача на логику и теорию вероятности

Представьте себя участником викторины. Перед вами 3 шкатулки, в одной из которых ценный приз, а в 2-х других пусто.Ведущий викторины предлагает вам выбрать одну из них, но не открывать и вы делаете свой выбор. Далее он открывает убирает из оставшихся 2-х пустую. Т.е. остается всего 2 шкатулки, в одной из которых приз.

Затем ведущий, облачается в лучезарную улыбку и предлагает вам поменять ваш выбор, т.е. отдать ему шкатулку, которую вы выбрали вначале и открыть ту, что осталась.

Вопрос: стоит ли ему довериться и увеличится ли вероятность выигрыша ценного приза?

Смотреть правильный ответ с комментарием

Да, определенно стоит поменять шкатулки, т.к. шансы выиграть ценный приз увеличатся в два раза!

Суть заключается в парадоксе Монти Холла, известной задаче теории вероятностей. Ее решение, на первый взгляд, противоречит здравому смыслу, т.к. хочется рассуждать так: после того, как ведущий убрал пустую шкатулку, приз может быть только в одной из двух оставшихся. Т.к. у участника викторины нет никакой информации о том, в какой шкатулке приз, то вероятность его нахождения в каждой из шкатулок одинакова, т.е. менять выбор смысла нет. Вроде бы все логично, но с точки зрения вероятности ход мысли ошибочен.


Если ведущий викторины всегда знает что в каждой шкатулке находится, всегда открывает ту из оставшихся шкатулок, которая пустая, и всегда предлагает участнику изменить свой выбор, то вероятность того, что приз находится за выбранной игроком шкатулке равна 1/3 и, соответственно, вероятность того, что приз находится в оставшейся шкатулке, равна 2/3. Т.о, изменив свой первоначальный выбор, участник увеличивает свои шансы на приз в 2 раза, т.е. 2/3 против 1/3. Да, вывод противоречит интуитивному восприятию ситуации и именно поэтому такая задача называется парадоксом Монти Холла.

Уверены, что если вы любите такие не тривиальные задачи, то такая разминка для ума пришлась вам по душе!)

Если вам понравилось — поделитесь ссылкой с друзьями и пусть они тоже попытаются дойти до правильного ответа!)

2 человека из 3-х дают неверный ответ на эту головоломку. А что насчет вас?

Разного рода головоломки, будь то судоку или утренний кроссворд, прекрасно развивают ум. Некоторые из них заставляют напрячь мозги, зато какое чувство гордости вы испытываете, когда находите верный ответ!

Мастер Йода рекомендует:  Реклама в Facebook станет еще эффективней

На первый взгляд, эта головоломка довольно проста. Однако, как показывает статистика, только 36% людей справляются с ней. Что насчет вас?

Перед вами 3 коробки, в одной из них — автомобиль. Он будет ваш, если вы отгадаете, где он, исходя из имеющихся условий.

Под каждой коробкой — условие, и только одно из них верно.

Коробка 1: Машина в этой коробке.Коробка 2: Машина не в этой коробке.
Коробка 3: Машина не в 1-й коробке.

Правильный ответ — в коробке 2.

Ответ можно найти методом исключения. Мы помним, что только одно из утверждений верное. Если бы машина была в Коробке 1, то были бы верны оба условия — и первое, и второе. Однако это невозможно, ведь мы помним, что только одно из условий этой задачи верно. Если бы машина была в коробке 3, то также были бы верны оба условия — и второе, и третье. Значит, автомобиль не в 3-й коробке. Таким образом, искомое находится в коробке 2.

Опровержение «Парадокса Монти Холла» (мнимое опровержение, как выяснилось)

Друзья, буду рад выслушать критику моему опровержению данного пародокса (псевдопарадокса, если я прав). И тогда я воочию убежусь, что логика моя хромает, перестану мнить себя мыслителем и задумаюсь о смене вида деятельности на более лирический :о). Итак, вот содержание задачи. Предлагаемое решение и моё опровержение ниже.

Представьте, что вы стали участником игры, в которой вы находитесь перед тремя дверями. Ведущий, о котором известно, что он честен, поместил за одной из дверей автомобиль, а за двумя другими дверями — по козе. У вас нет никакой информации о том, что за какой дверью находится.

Ведущий говорит вам: «Сначала вы должны выбрать одну из дверей. После этого я открою одну из оставшихся дверей, за которой находится коза. Затем я предложу вам изменить свой первоначальный выбор и выбрать оставшуюся закрытую дверь вместо той, которую вы выбрали вначале. Вы можете последовать моему совету и выбрать другую дверь, либо подтвердить свой первоначальный выбор. После этого я открою дверь, которую вы выбрали, и вы выиграете то, что находится за этой дверью.»

Вы выбираете дверь номер 3. Ведущий открывает дверь номер 1 и показывает, что за ней находится коза. Затем ведущий предлагает вам выбрать дверь номер 2.

Увеличатся ли ваши шансы выиграть автомобиль, если вы последуете его совету?
Парадокс Монти Холла — одна из известных задач теории вероятностей, решение которой, на первый взгляд, противоречит здравому смыслу.
При решении этой задачи обычно рассуждают примерно так: после того, как ведущий открыл дверь, за которой находится коза, автомобиль может быть только за одной из двух оставшихся дверей. Поскольку игрок не может получить никакой дополнительной информации о том, за какой дверью находится автомобиль, то вероятность нахождения автомобиля за каждой из дверей одинакова, и изменение первоначального выбора двери не дает игроку никаких преимуществ. Однако такой ход рассуждений неверен.
Если ведущий всегда знает, за какой дверью что находится, всегда открывает ту из оставшихся дверей, за которой находится коза, и всегда предлагает игроку изменить свой выбор, то вероятность того, что автомобиль находится за выбранной игроком дверью, равна 1/3, и, соответственно, вероятность того, что автомобиль находится за оставшейся дверью, равна 2/3. Таким образом, изменение первоначального выбора увеличивает шансы игрока выиграть автомобиль в 2 раза. Этот вывод противоречит интуитивному восприятию ситуации большинством людей, поэтому описанная задача и называется парадоксом Монти Холла.

Мне кажется, что шансы не изменятся, т.е. никакого парадокса нет.

И вот почему: первый и второй выборы дверей — это независимые события. Всё равно что кидать монетку 2 раза: то, что выпадет во 2-й раз, никак не зависит от того, что выпало в 1-й.

Так и здесь: после открытия двери с козой игрок оказывается в новой ситуации, когда у него 2 двери и вероятность выбора машины или козы 1/2.

Ещё раз: после открытия одной двери из трёх вероятность того, что автомобиль находится за оставшейся дверью, не равна 2/3, т.к. 2/3 — это вероятность того, что авто находится за какими-либо 2-мя дверьми. Неверно приписывать эту вероятность неоткрытой дверьи и открытой. До открытия дверей был такой расклад вероятностей, но после открытия одной двери, все эти вероятности становятся ничтожными, т.к. ситуация изменилась, а потому нужен новый подсчёт вероятности, который обычные люди правильно проводят, отвечая, что ничего от перемены выбора не изменится.

Добавление: 1) рассуждение, что:

а) вероятность найти машину за выбранной дверью составляет 1/3,


б) вероятность, что машина за двумя другими невыбранными дверьми, 2/3,

в) т.к. ведущий открыл дверь с козой, то вероятность 2/3 целиком переходит на одну невыбранную (и неоткрытую) дверь,

а потому надо менять выбор на другую дверь, чтобы вероятность с 1/3 стала 2/3, не верно, но ложно, а именно: в пункте «в», ибо изначально вероятность 2/3 касается любых двух дверей, включая 2 оставшиеся не открытыми, а раз одну дверь открыли, то эта вероятность поделится поровну между 2 не открытыми, т.е. вероятность будет равная, а выбор другой двери её не увеличит.

2) условные вероятности рассчитывают, если есть 2 и более случайных событий, и для каждого события отдельно рассчитывают вероятность, а уже затем высчитывают вероятность совместного наступления 2 и более событий. Тут сначала вероятность угадать была 1/3, но чтобы рассчитать вероятность того, что машина не за той дверью, которая была выбрана, но за другой не открытой, не нужно рассчитывают условную вероятность, а нужно вычислить простую вероятность, которая равна 1 из 2, т.е. 1/2.

3) Таким образом, это не парадокс, а заблуждение! (19.11.2009)

Добавление 2: Вчера додумался до простейшего объяснения, что стратегия перевыбора всё же является более выигрышной (парадокс верен!): при первом выборе попасть в козу в 2 раза более вероятно, чем в авто, ведь коз две, а потому при втором выборе надо менять выбор. Это же так очевидно :о)

Или иначе: надо не метить в авто, но отбраковать коз, и в этом помогает даже ведущий, открывая козу. А в начале игры с вероятность 2 из 3 это получится и у играющего, так что, отбраковав коз, надо менять выбор. И это тоже очень очевидно вдруг стало :о)

Так что всё, что я писал до сих пор, было псевдоопровержением. Что ж, вот ещё одна иллюстрация к тому, что надо быть скромнее, уважать чужую точку зрения и не доверять уверениям своей логики, что её решения кристалльно логичны.

Спасибо всем за помощь. Думаю, вы получили такое интеллектуальное удовольствие, как и я. :о) (20.11.2009)

Перед вами три коробки, в какой из них находится приз?

Математика случая. История теории вероятностей

Стенограмма и видеозапись лекции доктора физико-математических наук, ведущего научного сотрудника Математического института имени Стеклова, ведущего научного сотрудника ИППИ РАН, профессора факультета математики Высшей школы экономики, директора исследований Национального центра научных исследований во Франции (CNRS) Александра Буфетова, прочитанной в рамках цикла «Публичные лекции «Полит.ру»» 6 февраля 2014 г.

Иллюзия закономерности: почему случайность кажется неестественной

Наши представления о случайном, закономерном и невозможном часто расходятся с данными статистики и теории вероятностей. В книге «Несовершенная случайность. Как случай управляет нашей жизнью» американский физик и популяризатор науки Леонард Млодинов рассказывает о том, почему случайные алгоритмы выглядят так странно, в чем подвох «рандомной» тасовки песен на IPod и от чего зависит удача биржевого аналитика. «Теории и практики» публикуют отрывок из книги.

Детерминизм — общенаучное понятие и философское учение о причинности, закономерности, генетической связи, взаимодействии и обусловленности всех явлений и процессов, происходящих в мире.

Бог — это статистика

Дебора Нолан, профессор статистики в Университете Калифорнии в Беркли, предлагает своим студентам выполнить очень странное на первый взгляд задание. Первая группа должна сто раз подбрасывать монетку и записывать результат: орёл или решка. Вторая должна представить, что подбрасывает монетку – и тоже составить список из сотни «мнимых» результатов.

Что такое детерминизм

Если известны начальные условия системы, можно, используя законы природы, предсказать ее конечное состояние.

Задача о разборчивой невесте

Можно ли из одной точки в пространстве добраться до другой? Древнегреческий философ Зенон Элейский считал, что перемещение невозможно осуществить вообще, но как он это аргументировал? Колм Келлер расскажет о том, как разрешить знаменитый парадокс Зенона.

Парадоксы бесконечных множеств

Представьте отель с бесконечным числом номеров. Приезжает автобус с бесконечным числом будущих постояльцев. Но разместить их всех — не так-то просто. Это бесконечная морока, а гости бесконечно уставшие. И если справиться с задачей не удастся, то можно потерять бесконечно много денег! Что же делать?


Зависимость роста ребенка от роста родителей

Молодым родителям, конечно, хочется знать, какого роста будет их ребенок, став взрослым. Математическая статистика может предложить простую линейную зависимость для приближен ной оценки роста детей, исходя только из роста отца и матери, а также указать точность такой оценки.

Парадокс Монти Холла — наверно самый известный парадокс в теории вероятностей. Существует масса его вариаций, например, парадокс трёх узников. И существует масса толкований и объяснений этого парадокса. Но здесь, я хотел бы дать не только формальное объяснение, но показать «физическую» основу того, что происходит в парадоксе Монти Холла и ему подобных.

Формулировка парадокса Монти Холла

Классическая формулировка такова:

«Вы участник игры. Перед вами три двери. За одной из них приз. Ведущий предлагает вам попытаться угадать, где приз. Вы указываете на одну из дверей (наугад).

Формулировка парадокса Монти Холла

Ведущий знает, где на самом деле находится приз. Он, пока, не открывает ту дверь, на которую вы показали. Но открывает вам ещё одну из оставшихся дверей, за которой нет приза. Вопрос в том, сто́ит ли вам изменить свой выбор, или остаться при прежнем решении?»

Оказывается, что если вы просто измените выбор, то ваши шансы выиграть возрастут!

Парадоксальность ситуации очевидна. Кажется, что всё происходящее случайно. Нет никакой разницы, поменяете вы своё решение или нет. Но это не так.

«Физическое» объяснение природы этого парадокса

Давайте, сперва, не будем вдаваться в математические тонкости, а просто не предвзято посмотрим на ситуацию.

В этой игре вы лишь сперва делаете случайный выбор. Потом ведущий сообщает вам дополнительную информацию, которая и позволяет вам увеличить свои шансы на победу.

Каким образом ведущий сообщает вам дополнительную информацию? Очень просто. Обратите внимание, что он открывает не любую дверь.

Мастер Йода рекомендует:  Скрытое поле в форме HTML

Давайте, для простоты (хоть в этом и есть элемент лукавства), рассмотрим более вероятную ситуацию: вы показали на дверь, за которой нет приза. Тогда, за одной из оставшихся дверей приз есть. То есть, у ведущего нет выбора. Он открывает вполне определённую дверь. (На одну указали вы, за другой есть приз, остаётся только одна дверь, которую может открыть ведущий.)

Именно в этот момент осмысленного выбора, он и сообщает вам информацию, которой вы можете воспользоваться.

В данном случае, использование информации заключается в том, что вы меняете решение.

Кстати, ваш второй выбор уже тоже не случаен (вернее, не на столько случаен, как первый выбор). Ведь вы выбираете из закрытых дверей, а одна уже открыта и она не произвольная.

Собственно, уже после этих рассуждений у вас может появиться ощущение, что лучше поменять решение. Это действительно так. Давайте покажем это более формально.

Более формальное объяснение парадокса Монти Холла

На самом деле ваш первый, случайный, выбор разбивает все двери на две группы. За той дверью, которую выбрали вы приз находится с вероятностью 1/3, за двумя другими — с вероятностью 2/3. Теперь ведущий вносит изменения: он открывает одну дверь во второй группе. И теперь вся вероятность 2/3 относится только к закрытой двери из группы из двух дверей.

Понятно, что теперь вам выгодней поменять своё решение.

Хотя, конечно, у вас остаётся шанс проиграть.


Тем не менее смена выбора увеличивает ваши шансы на выигрыш.

Парадокс Монти Холла

Парадокс Монти Холла — вероятностная задача, решение которой (по мнению некоторых) противоречит здравому смыслу. Формулировка задачи:

Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трех дверей. За одной из дверей находится автомобиль, за двумя другими дверями — козы.
Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где — козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза.

Парадокс Монти Холла. Самая неточная математика

После этого он спрашивает вас, не желаете ли вы изменить свой выбор и выбрать дверь номер 2.
Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор? [wiki]

При решении задачи часто ошибочно полагают что два выбора являются независимыми и, следовательно, вероятность при изменении выбора не изменится. На самом деле это не так, в чём можно убедиться вспомнив формулу Байеса или посмотрев на результаты симуляции ниже:

Здесь: «стратегия 1» — не менять выбор, «стратегия 2» — изменить выбор. Теоретически, для случая с 3-мя дверями, распределение вероятностей — 33,(3)% и 66,(6)%. При численной симуляции должны бы получаться похожие результаты.

Ссылки

Парадокс Монти Холла – задача из раздела теории вероятности, в решении которой просматривается противоречие здравому смыслу.

История возникновения[править | править вики-текст]

В конце 1963 года в эфир вышло новое ток-шоу под названием «Let’s Make a Deal» («Давайте договоримся»). По сценарию викторины зрители из аудитории получали призы за правильные ответы, имея шанс приумножить их, делая новые ставки, но рискуя имеющимся выигрышем. Основателями шоу являлись Стефан Хатосу и Монти Холл, последний из которых стал его неизменным ведущим на многие годы.

Одним из заданий для участников стал розыгрыш Главного приза, который был расположен за одной из трех дверей. За двумя оставшимися находились поощрительные призы, в свою очередь ведущий знал порядок их расположения. Участнику необходимо было определить выигрышную дверь, поставив на кон весь свой выигрыш за шоу.

Когда угадывающий определялся с номером, ведущий открывал одну из оставшихся дверей, за которой находился поощрительный приз, и предлагал игроку поменять первоначально выбранную дверь.

Формулировки[править | править вики-текст]

Как конкретную задачу, парадокс впервые сформулировал Стив Селвин (Steve Selvin) в 1975 году, отправивший в журнал The American Statistician («Американский статистик»), и ведущему Монти Холлу, вопрос: изменятся ли шансы участника выиграть Главный приз, если после открытия двери с поощрительным он поменяет свой выбор? После этого случая появилось понятие «Парадокс Монти Холла».

В 1990 была в Parade Magazine (Журнал «Парад») опубликована самая распространенная версия парадокса с примером:

«Представьте себя на телеигре, где нужно отдать предпочтенье одной из трех дверей: за двумя из них козы, а за третьей — автомобиль. Когда Вы совершите выбор, предположив, например, что выигрышная дверь номер один, ведущий открывает одну из оставшихся двух дверей, например, номер три, за которой коза. Затем Вам дается шанс изменить выбор на другую дверь? Можно ли увеличить шансы выиграть автомобиль, если поменять свой выбор с двери номер один на дверь номер два?»

Эта формулировка является упрощенным вариантом, т.к. остается фактор влияния ведущего, который точно знает, где автомобиль и заинтересован в проигрыше участника.

Чтоб задача стала сугубо математической, необходимо исключить человеческий фактор, введя открытие двери с поощрительным призом и возможность изменить первоначальный выбор как неотъемлемые условия.

Решение[править | править вики-текст]

При сравнении шансов на первый взгляд изменение номера двери не даст никаких преимуществ, т.к. все три варианта имеют шанс на выигрыш 1/3 (ок. 33,33% на каждую из трех дверей). При этом открытие одной из дверей никак не отразится на шансах двух оставшихся, чьи шансы станут 1/2 к 1/2 (50% на каждую из двух оставшихся дверей). В основу такого суждения ложится суждение, что выбор двери игроком и выбор двери ведущим – два независимых события, не влияющих одно на другое. В действительности необходимо рассматривать всю последовательность событий как единое целое. В соответствии с теорией вероятности, у первой выбранной двери шансы с начала и до конца игры неизменно 1/3 (ок.33,33%), а у двух оставшихся в сумме 1/3+1/3 = 2/3 (ок. 66,66%). Когда открывается одна из двух оставшихся дверей, ее шансы становятся 0% (за ней спрятан поощрительный приз), и как результат шансы закрытой невыбранной двери составят 66,66%, т.е. в два раза больше, чем у выбранной первоначально.

Для облегчения понимания результатов выбора можно рассмотреть альтернативную ситуацию, в которой количество вариантов будет больше, например — тысяча. Вероятность выбрать выигрышный вариант составит 1/1000 (0,1%). При условии, что в последствии из оставшихся девятьсот девяносто девяти вариантов будут открыты девятьсот девяносто восемь неверных, становится очевидно, что вероятность одной оставшейся двери из девятьсот девяносто девяти невыбранных выше, чем у единственной, выбранной вначале.


Упоминания[править | править вики-текст]

Встретить упоминание Парадокса Монти Холла можно в «Двадцать одно» (фильма Роберта Лукетича), «Недотёпа» (романе Сергея Лукьяненко), телесериале «4исла» (телесериал), «Загадочное ночное убийство собаки» (повести Марка Хэддона), «XKCD» (комикс), «Разрушители легенд» (телешоу).

Перед вами три коробки, в какой из них находится приз?

Представьте, что вы стали участником игры со следующими правилами. Перед вами лежат три коробки. В одной из них находится приз, а две других — пустые. Вам неизвестно в какой из коробок лежит приз. Ведущий предлагает вам выбрать одну из коробок. После того, как вы сделали выбор, ведущий открывает одну из оставшихся пустых коробок. После чего вы принимаете решение — оставить свой выбор на первоначальной коробке либо выбрать ту, что не была выбрана вами изначально и не была открыта ведущим.

Например, вы выбрали коробку $1$. Ведущий открыл пустую коробку $2$. После чего вам предлагают либо оставить коробку $1$, либо выбрать коробку $3$.

1. С точки зрения максимизации вероятности выигрыша, стоит ли вам сменить коробку?

2. Как изменяется вероятность того, что вы получите приз сменив коробку, по мере увеличения числа коробок $n$? Будет ли при $n>3$ по прежнему выгодно сменить коробку?

3. Как изменится ответ на предыдущий пункт, если ведущий будет открывать $1\leq k\leq(n-2)$ коробок на втором шаге.

1. Сначала рассмотрим простое объяснение. В начале вы выбираете пустую коробку с вероятностью $\frac<2><3>$. А значит, вторая коробка, которую не откроет ведущий, с такой же вероятностью, то есть $\frac<2><3>$, содержит приз. Следовательно, вам следует изменить свой начальный выбор повысив вероятность выигрыша с $\frac<1><3>$ до $\frac<2><3>$.

Теперь воспользуемся формулой Байеса. Обозначим несовместные события $A_<1>$, $A_<2>$ и $A_<3>$ — выигрыш оказался в $1$-й, $2$-й или $3$-й коробке соответственно. Без потери общности допустим, что вы выбрали коробку $1$, а ведущий открыл коробку $3$. Наконец, введем событие $A_<23>$ — из коробок $2$ и $3$ ведущий открыл коробку $3$.

Поскольку $P(A_<2>|A_<23>)>P(A_<1>|A_<23>)$, то вам действительно выгодно изменить свое изначальное решение и вместо сундука $1$ выбрать сундук $2$, тем самым повысив вероятность получения приза с $\frac<1><3>$ до $\frac<2><3>$, то есть в 2 раза!

Рассмотрим альтернативный способов решения. Введем событие $G$ — после того, как один из пустых ящиков был удален, мы выбрали другой произвольный и он оказался выигрышным.

2. Обозначим событие $A_<(-2)>$ — из всех коробок от $2$ до $n$ ведущий открыл не $2$-ю коробку. Тогда вероятность этого события составит:

Откуда получаем, что нам по прежнему выгодно сменить свой выбор:

Возможно и более простое решение. Введем событие $G$ — после того, как один из пустых ящиков был удален, мы выбрали другой произвольный и он оказался выигрышным.

3. Без потери общности предположим, что ведущий из коробок со $2$-й по $n$-ю открыл коробки со $2$-й по $(k+1)$-ю. Обозначим это событие через $A_<(k)>$. По аналогии с предыдущим пунктом получаем следующий результат:

Возьмем одну из не открытых ведущим коробок, например, $n$-ю. Откуда получим:

Рассмотрим упрощенное решение:

Пожалуйста, войдите или зарегистрируйтесь, чтобы оценивать задачи, добавлять их в избранные и совершать некоторые другие, дополнительные действия.

Задача про 3 двери

Представьте себя участником игры, где нужно выбрать одну дверь из трёх. За одной дверью скрывается автомобиль, а за остальными – козы. Вы должны выбрать одну дверь, к примеру, дверь №1. А ведущий, знающий о том, что находится за каждой дверью, открывает одну из двух дверей, которые остались, например, дверь №3, за которой стоит коза. После этого ведущий интересуется у вас, не желаете ли вы изменить свой изначальный выбор и выбрать дверь №2? Вопрос: повысятся ли шансы на выигрыш, если вы измените свой выбор?

Ответ смотрите в нашей статье про парадокс Монти Холла: https://4brain.ru/blog/парадокс-монти-холла/

Любите подобные загадки, игры, головоломки и тесты? Получите неограниченный доступ ко всем интерактивным материалам на сайте, чтобы развиваться эффективнее.

Добавить комментарий