Обзор самых популярных алгоритмов машинного обучения


Оглавление (нажмите, чтобы открыть):

Как выбирать алгоритмы для машинного обучения

Разновидности машинного обучения

Обучение с учителем

Алгоритмы обучения с учителем делают прогнозы на основе набора примеров. Так, чтобы предсказать цены в будущем, можно использовать курс акций в прошлом. Каждый пример, используемый для обучения, получает свою отличительную метку значения, в данном случае это курс акций. Алгоритм обучения с учителем ищет закономерности в этих метках значений. Алгоритм может использовать любую важную информацию — день недели, время года, финансовые данные компании, вид отрасли, наличие серьезных геополитических событий, и каждый алгоритм ищет разные виды закономерностей. После того как алгоритм находит подходящую закономерность, с ее помощью он делает прогнозы по неразмеченным тестовым данным, чтобы предугадать цены в будущем.

Здесь и далее будут описаны методы и алгоритмы, используемые в Azure.

Это популярный и полезный тип машинного обучения. За одним исключением все модули машинного обучения Azure являются алгоритмами обучения с учителем. В службах машинного обучения Azure представлено несколько конкретных видов машинного обучения с учителем: классификация, регрессия и выявление аномалий.

  • Классификация. Когда данные используются для прогнозирования категории, обучение с учителем называется классификацией. В этом случае происходит назначение изображения, например «кот» или «собака». Когда есть только два варианта выбора, это называется двухклассовой классификацией. Когда категорий больше, это называется многоклассовой классификацией.
  • Регрессия. Когда прогнозируется значение, например, в случае с курсом акций, обучение с учителем называется регрессией.
  • Фильтрация выбросов. Иногда нужно определить необычные точки данных. Например, при обнаружении мошенничества под подозрение попадают любые странные закономерности трат средств с кредитной карты. Возможных вариантов так много, а примеров для обучения так мало, что практически невозможно узнать, как будет выглядеть мошенническая деятельность. При фильтрации выбросов просто изучается нормальная активность (с помощью архива допустимых транзакций) и находятся все операции с заметными отличиями.

Обучение без учителя

В рамках обучения без учителя у объектов данных нет меток. Вместо этого алгоритм обучения без учителя должен организовать данные или описать их структуру. Для этого их можно сгруппировать в кластеры, чтобы они стали более структурированными, или найти другие способы упростить сложные данные.

Обучение с подкреплением

В рамках обучения с подкреплением алгоритм выбирает действие в ответ на каждый входящий объект данных. Через некоторое время алгоритм обучения получает сигнал вознаграждения, который указывает, насколько правильным было решение. На этом основании алгоритм меняет свою стратегию, чтобы получить наивысшую награду. Обучение с подкреплением распространено в роботехнике, где набор показаний датчика в определенный момент времени является объектом, и алгоритм должен выбрать следующее действие робота. Кроме того, этот алгоритм подходит для приложений в Интернете вещей.

Советы по выбору алгоритма

Точность

Не всегда нужен самый точный ответ. В зависимости от цели иногда достаточно получить примерный ответ. Если так, то вы можете значительно сократить время отработки, выбирая приближенные методы. Еще одно преимущество приближенных методов заключается в том, что они исключают переобучение.

Время обучения

Количество минут или часов, необходимых для обучения модели, сильно зависит от алгоритмов. Зачастую время обучения тесно связано с точностью — они определяют друг друга. Кроме того, некоторые алгоритмы более чувствительны к объему обучающей выборки, чем другие. Ограничение по времени помогает выбрать алгоритм, особенно если используется обучающая выборка большого объема.

Линейность

Во многих алгоритмах машинного обучения используется линейность. Алгоритмы линейной классификации предполагают, что классы можно разделить прямой линией (или ее более многомерным аналогом). Здесь речь идет о логистической регрессии и метод опорных векторов. Алгоритмы линейной регрессии предполагают, что распределение данных описывается прямой линией*. Эти предположения подходят для решения ряда задач, но в некоторых случаях снижают точность.

Ограничение нелинейных классов — использование алгоритма линейной классификации снижает точность

Данные с нелинейной закономерностью — при использовании метода линейной регрессии возникают более серьезные ошибки, чем это допустимо

Несмотря на недостатки, к линейным алгоритмам обычно обращаются в первую очередь. Они просты с алгоритмической точкой зрения, а обучение проходит быстро.

Количество параметров

Параметры — это рычаги, с помощью которых специалисты по данным настраивают алгоритм. Это числа, которые влияют на поведение алгоритма, например устойчивость к ошибкам или количество итераций, либо различия в вариантах поведения алгоритма. Иногда время обучения и точность алгоритма могут меняться в зависимости от тех или иных параметров. Как правило, найти хорошую комбинацию параметров для алгоритмов можно путем проб и ошибок.

Также в машинном обучении Azure есть модульный блок подбора параметров, который автоматически пробует все комбинации параметров с указанной вами степенью детализации. Хоть этот способ и позволяет опробовать множество вариантов, однако чем больше параметров, тем больше времени уходит на обучение модели.

К счастью, если параметров много, это означает, что алгоритм отличается высокой гибкостью. И при таком способе можно добиться отличной точности. Но при условии, что вам удастся найти подходящую комбинацию параметров.

Количество признаков

В некоторых типах данных признаков может быть гораздо больше, чем объектов. Это обычно происходит с данными из области генетики или с текстовыми данными. Большое количество признаков препятствует работе некоторых алгоритмов обучения, из-за чего время обучения невероятно растягивается. Для подобных случаев хорошо подходит метод опорных векторов (см. ниже).

Особые случаи

Некоторые алгоритмы обучения делают допущения о структуре данных или желаемых результатах. Если вам удастся найти подходящий вариант для своих целей, он принесет вам отличные результаты, более точные прогнозы или сократит время обучения.

• — демонстрирует отличную точность, короткое время обучения и использование линейности.
○ — демонстрирует отличную точность и среднее время обучения.

Алгоритм Точность Время обучения Линейность Параметры Примечание
Двухклассовая классификация
Логистическая регрессия 5
Лес деревьев решений 6
Джунгли деревьев решений 6 Низкие требования к памяти
Улучшенное дерево принятия решений 6 Высокие требования к памяти
Нейронная сеть 9 Возможна дополнительная настройка
Однослойный перцептрон 4
Метод опорных векторов 5 Хорошо подходит для больших наборов признаков
Локальные глубинные методы опорных векторов 8 Хорошо подходит для больших наборов признаков
Байесовские методы 3
Многоклассовая классификация
Логистическая регрессия 5
Лес деревьев решений 6
Джунгли деревьев решений 6 Низкие требования к памяти
Нейронная сеть 9 Возможна дополнительная настройка
Один против всех См. свойства выбранного двухклассового метода
Многоклассовая классификация
Регрессия
Линейная 4
Байесова линейная 2
Лес деревьев решений 6
Улучшенное дерево принятия решений 5 Высокие требования к памяти
Быстрые квантильные регрессионные леса 9 Прогнозирование распределений, а не точечных значений
Нейронная сеть 9 Возможна дополнительная настройка
Пуассона 5 Технически логарифмический. Для подсчета прогнозов
Порядковая Для прогнозирования рейтинга
Фильтрация выбросов
Методы опорных векторов 2 Отлично подходит для больших наборов признаков
Фильтрация выбросов на основе метода главных компонент 3 Отлично подходит для больших наборов признаков
Метод k-средних 4 Алгоритм кластеризации

Примечания к алгоритму

Линейная регрессия

Как мы уже говорили, линейная регрессия рассматривает данные линейно (или в плоскости, или в гиперплоскости). Это удобная и быстрая «рабочая лошадка», но для некоторых проблем она может быть чересчур простой. Здесь вы найдете руководство по линейной регрессии.

Данные с линейным трендом

Логистическая регрессия

Пусть слово «регрессия» в названии не вводит вас в заблуждение. Логистическая регрессия — это очень мощный инструмент для двухклассовой и многоклассовой классификации. Это быстро и просто. Поскольку вместо прямой линии здесь используется кривая в форме буквы S, этот алгоритм прекрасно подходит для разделения данных на группы. Логистическая регрессия ограничивает линейный класс, поэтому вам придется смириться с линейной аппроксимацией.

Логистическая регрессия для двухклассовых данных всего с одним признаком — граница класса находится в точке, где логистическая кривая близка к обоим классам

Деревья, леса и джунгли

Леса решающих деревьев (регрессия, двухклассовые и многоклассовые), джунгли решающих деревьев (двухклассовые и многоклассовые) и улучшенные деревья принятия решений (регрессия и двухклассовые) основаны на деревьях принятия решений, базовой концепции машинного обучения. Существует много вариантов деревьев принятия решений, но все они выполняют одну функцию — подразделяют пространство признаков на области с одной и той же меткой. Это могут быть области одной категории или постоянного значения, в зависимости от того, используете ли вы классификацию или регрессию.

Дерево принятия решений подразделяет пространство признаков на области с примерно одинаковыми значениями

Поскольку пространство признаков можно разделить на небольшие области, это можно сделать так, чтобы в одной области был один объект — это грубый пример ложной связи. Чтобы избежать этого, крупные наборы деревьев создаются таким образом, чтобы деревья не были связаны друг с другом. Таким образом, «дерево принятия решений» не должно выдавать ложных связей. Деревья принятия решений могут потреблять большие объемы памяти. Джунгли решающих деревьев потребляют меньше памяти, но при этом обучение займет немного больше времени.

Улучшенные деревья принятия решений ограничивают количество разделений и распределение точек данных в каждой области, чтобы избежать ложных связей. Алгоритм создает последовательность деревьев, каждое из которых исправляет допущенные ранее ошибки. В результате мы получаем высокую степень точности без больших затрат памяти. Полное техническое описание смотрите в научной работе Фридмана.

Быстрые квантильные регрессионные леса — это вариант деревьев принятия решений для тех случаев, когда вы хотите знать не только типичное (среднее) значение данных в области, но и их распределение в форме квантилей.

Нейронные сети и восприятие

Нейронные сети — это алгоритмы обучения, которые созданы на основе модели человеческого мозга и направлены на решение многоклассовой, двухклассовой и регрессионной задач. Их существует огромное множество, но в машинном обучении Azure нейронные сети принимают форму направленного ациклического графика. Это означает, что входные признаки передаются вперед через последовательность уровней и превращаются в выходные данные. На каждом уровне входные данные измеряются в различных комбинациях, суммируются и передаются на следующий уровень. Эта комбинация простых расчетов позволяет изучать сложные границы классов и тенденции данных будто по волшебству. Подобные многоуровневые сети выполняют «глубокое обучение», которое служит источником вдохновения для технических отчетов и научной фантастики.

Но такая производительность обходится не бесплатно. Обучение нейронных сетей занимает много времени, особенно для крупных наборов данных с множеством признаков. В них больше параметров, чем в большинстве алгоритмов, и поэтому подбор параметров значительно увеличивает время обучения. А для перфекционистов, которые хотят указать собственную структуру сети, возможности практически не ограничены.

Границы, изучаемые нейронными сетями, бывают сложными и хаотичными

Однослойный перцептрон — это ответ нейронных сетей на увеличение времени обучения. В нем используется сетевая структура, которая создает линейные классовые границы. По современным стандартам звучит примитивно, но этот алгоритм давно проверен на деле и быстро обучается.

Методы опорных векторов

Методы опорных векторов находят границу, которая разделяет классы настолько широко, насколько это возможно. Когда невозможно четко разделить два класса, алгоритмы находят наилучшую границу. Двухклассовый метод опорных векторов делает это с помощью прямой линии (говоря на языке методов опорных векторов, использует линейное ядро). Благодаря линейной аппроксимации обучение выполняется достаточно быстро. Особенно интересна функция работы с объектами с множеством признаков, например, текстом или геномом. В таких случаях опорные векторные машины могут быстрее разделить классы и отличаются минимальной вероятностью создания ложной связи, а также не требуют больших объемов памяти.

Стандартная граница класса опорной векторной машины увеличивает поле между двумя классами

Еще один продукт от Microsoft Research — двухклассовые локальные глубинные методы опорных векторов. Это нелинейный вариант методов опорных векторов, который отличается скоростью и эффективностью памяти, присущей линейной версии. Он идеально подходит для случаев, когда линейный подход не дает достаточно точных ответов. Чтобы обеспечить высокую скорость, разработчики разбивают проблему на несколько небольших задач линейного метода опорных векторов. Подробнее об этом читайте в полном описании.

С помощью расширения нелинейных методов опорных векторов одноклассовая машина опорных векторов создает границу для всего набора данных. Это особенно полезно для фильтрации выбросов. Все новые объекты, которые не входят в пределы границы, считаются необычными и поэтому внимательно изучаются.

Байесовские методы

Байесовские методы отличаются очень нужным качеством: они избегают ложных связей. Для этого они заранее делают предположения о возможном распределении ответа. Также для них не нужно настраивать много параметров. Машинное обучение Azure предлагает Байесовские методы как для классификации (двухклассовая классификация Байеса), так и для регрессии (Байесова линейная регрессия). При этом предполагается, что данные можно разделить или расположить вдоль прямой линии.

Кстати, точечные машины Байеса были разработаны в Microsoft Research. В их фундаменте лежит великолепная теоретическая работа. Если вас заинтересует эта тема, читайте статью в MLR и блог Криса Бишопа (Chris Bishop).

Особые алгоритмы

Если вы преследуете конкретную цель, вам повезло. В коллекции машинного обучения Azure есть алгоритмы, которые специализируются в прогнозировании рейтингов (порядковая регрессия), прогнозирование количества (регрессия Пуассона) и выявлении аномалий (один из них основан на анализе главных компонентов, а другой — на методах опорных векторов). А еще есть алгоритм кластеризации (метод k-средних).

Выявление аномалий на основе PCA — огромное множество данных попадает под стереотипное распределение; под подозрение попадают точки, которые сильно отклоняются от этого распределения

Набор данных разделяется на пять кластеров по методу k-средних

Мастер Йода рекомендует:  Лекция 4. Серверные элементы управления Продолжение.

Также есть многоклассовый классификатор «один против всех», который разбивает проблему классификации N-класса на двухклассовые проблемы класса N-1. Точность, время обучения и свойства линейности зависят от используемых двухклассовых классификаторов.

Два двухклассовых классификатора формируют трехклассовый классификатор

Кроме того, Azure предлагает доступ к мощной платформе машинного обучения под названием Vowpal Wabbit. VW отказывается от категоризации, поскольку может изучить проблемы классификации и регрессии и даже обучаться от частично помеченных данных. Вы можете выбрать любой из алгоритмов обучения, функций потерь и алгоритмов оптимизации. Эта платформа отличается эффективностью, возможностью параллельного выполнения и непревзойденной скоростью. Она без труда справляется с большими наборами данных. VW была запущена Джоном Лэнгфордом (John Langford), специалистом из Microsoft Research, и является болидом «Формулы-1» в океане серийных автомобилей. Не каждая проблема подходит для VW, но если вы считаете, что это верный для вас вариант, то затраченные усилия обязательно окупятся. Также платформа доступна в виде автономного открытого исходного кода на нескольких языках.

Алгоритмы машинного обучения простым языком. Часть 1

Как недавнего выпускника буткемпа по машинному обучению от Flatiron School меня буквально затопило советами о том, как стать асом в прохождении интервью. Я заметил, что из социальных компетенций чаще всего упоминают умение объяснять принципы работы сложных алгоритмов машинного обучения человеку, который в этом совершенно не разбирается.

В этой статье я поделюсь тем, как я рассказал бы об этих алгоритмах своей бабушке. В некоторых объяснениях я зайду довольно глубоко, в некоторых лишь пройдусь поверхностно по алгоритму. Надеюсь, что всё из этого будет понятно и полезно тем, кто никогда в жизни не занимался анализом данных. Рассмотрим три темы:

  • Градиентный спуск и линия наилучшего соответствия.
  • Линейная регрессия (включая регуляризацию).
  • Логистическая регрессия.

Прежде всего, давайте разберёмся, в чём разница между алгоритмом и моделью. Хорошее объяснение есть на Quora:

Модель — как автомат с едой, который получает что-то за вход (деньги) и выдаёт какие-то выходные значения (например, газировку)… Алгоритм — это то, как обучается модель принимать решение в зависимости от входных данных. Например, алгоритм на основе ценности денег, которыми вы расплатились в автомате, и стоимости выбранного продукта будет определять, достаточно ли денег для покупки и какую сдачу вы должны получить.

То есть алгоритм — это математическая сила, стоящая за моделью. Одна и та же модель может использовать разные алгоритмы, что и будет их отличать. Алгоритм же без модели — математические уравнения, которые практически ничего не значат.

Градиентный спуск и линия наилучшего соответствия

(Хоть первое и не считается алгоритмом машинного обучения, его понимание важно для понимания того, как происходит оптимизация алгоритмов)

И вот объяснения:

Суть градиентного спуска в том, что он позволяет нам найти самое точное предсказание на основе данных.

Скажем, у тебя есть большой список роста и веса людей, которых ты знаешь, и тебе нужно каким-то образом отобразить данные на графике. Это будет выглядеть как-то так:

Теперь допустим, что проходит соревнование. Его суть заключается в том, что участникам нужно угадать вес человека по его росту. Угадавший получает денежный приз. Кроме того, чтобы оценивать вес человека на глаз, ты бы опиралась на набор данных о твоих знакомых, да?

Так, основываясь на графике выше, скорее всего, ты бы могла дать ответ, близкий к правильному, если бы у тебя был график тренда данных. Этот график-линия показывал бы ожидаемый вес для каждого значения роста. Тогда ты бы просто нашла значение роста, двигаясь параллельно оси весов, дошла бы до линии тренда и определила бы вес, понятно?

Но как найти эту идеальную линию? Возможно, ты могла бы построить ее вручную, но это заняло бы кучу времени. Здесь и нужен градиентный спуск!

Мы ищем эту линию при помощи минимизации так называемой “остаточной суммы квадратов”. Это просто сумма квадратов разности между значением нашей линии и точек, то есть то, насколько точки далеки от линии. Мы получаем всё меньшие значения суммы квадратов, меняя положение линии на графике: нам надо поместить нашу линию куда угодно, главное, чтобы она была как можно ближе к большинству точек.

Мы можем углубиться в это и обозначить каждый из параметров линии на кривой стоимости. При помощи градиентного спуска мы достигаем минимума кривой стоимости, где и находится минимум остаточной суммы квадратов.

У градиентного спуска есть ещё множество параметров, например, размер шага (то есть насколько быстро мы хотим достичь низа скейтбордной рампы) или скорость обучения (то, в каком направлении мы хотим достичь низа). В общем, суть такова: градиентный спуск позволяет найти линию наилучшего соответствия при помощи минимизации расстояния между точками графика и линией. Линия же, в свою очередь, позволяет предсказывать необходимое.

Линейная регрессия

Всё просто: линейная регрессия — это то, как мы анализируем силу зависимости между одной переменной (“результирующая переменная”) и одной или несколькими другими переменными (“независимыми переменными”).

Характерная черта линейной регрессии, как понятно из названия, заключается в том, что связь между этими переменными линейная. Что это значит в нашем случае: когда мы строим график зависимости независимых переменных от результирующей, точки будут располагаться примерно на одной линии, как показано ниже.

(Если ты не можешь построить график, то попробуй ответить на вопрос: изменение независимых переменных на определённую величину вызывает в результирующей переменной изменение на ту же величину? Если да, то данные линейно зависимы.)

Ещё одна важная деталь: результирующая переменная или то, что меняется с изменением наших других переменных, непрерывна. Что это значит?

Скажем, мы хотим измерить зависимость количества осадков от высоты над уровнем моря в штате Нью-Йорк. Тогда наша результирующая переменная — дождливость, независимая переменная — высота над уровнем моря. Если будем использовать линейную регрессию, то результирующую переменную нужно сформулировать как, например, “сколько дюймов осадков выпадает за определённое количество времени”, а не “дождливо/не дождливо”. Наша результирующая переменная должна быть непрерывной — значит она может быть любым числом (даже дробным).

Самое классное в линейной регрессии — это то, что она может предсказывать, используя линию наилучшего соответствия! Если мы запустим линейную регрессию на нашей задаче, мы можем найти эту линию, как и в градиентном спуске. Затем мы можем применять обученную модель для того, чтобы узнать количество осадков на определённой высоте.

Основные алгоритмы машинного обучения

В этой статье мы поговорим об основных алгоритмах, которые используются в процессе машинного обучения. И назовём лучшие из них по мнению Джеймса Ли, автора статьи «A Tour of The Top 10 Algorithms for Machine Learning Newbies». Как говорится, встречайте «горячую десятку»!

Алгоритм алгоритму рознь

Знакома ли вам теорема «No Free Lunch»? Суть её проста: не существует алгоритма, который стал бы наилучшим выбором для любой задачи и особенно обучения с учителем. К примеру, мы не можем утверждать, что нейронные сети всегда функционируют лучше, нежели деревья решений. Собственно говоря, на эффективность работы алгоритма оказывает влияние множество данных, включая и размер данных, и структуру набора данных.

Именно по этой причине нам нужно пробовать разные алгоритмы и проверять их эффективность на тестовых наборах данных, а только после этого выбирать наилучший вариант. Естественно, выбирать следует из алгоритмов, соответствующих поставленным задачам. Очевидно, что убирая квартиру, вы будете использовать веник или пылесос, но уж точно не лопату.

Идём дальше. Алгоритмы машинного обучения мы можем описать как обучение целевой функции f, которая самым лучшим образом соотносит входные переменные x и выходную переменную y: y = f(x).

При этом нам неизвестно, что же из себя представляет функция f. А если бы мы и знали, то применяли бы её напрямую, не пытаясь обучить посредством разных алгоритмов.

Самая распространённая задача в машинном обучении — предсказание значений y для новых значений x. Речь идёт о прогностическом моделировании, где наша цель — сделать предсказание максимально точным.

После нашего непродолжительного вступления пришло время поговорить о наиболее популярных алгоритмах, применяемых в машинном обучении.

1. Линейная регрессия

Один из самых понятных и известных алгоритмов в машинном обучении и статистике. Его можно представить в форме уравнения, описывающего прямую, максимально точно показывающую взаимосвязь между выходными переменными y и входными переменными x. Чтобы составить уравнения, найдём определённые коэффициенты b для входных переменных.

Зная x, мы должны найти y. Что касается цели этого алгоритма, то она состоит в поиске значений коэффициентов b0 и b1.

Чтобы оценить регрессионную модель, используют разные методы, например, метод наименьших квадратов. Вообще, линейная регрессия существует не одну сотню лет, поэтому алгоритм тщательно изучен. Он считается быстрым, простым и хорошо подходит для изучения в качестве первого алгоритма в машинном обучении.

2 . Логистическая регрессия

Очередной алгоритм, который пришёл в машинное обучение из статистики. Прекрасно подходит для решения задач бинарной классификации.

Чем логистическая регрессия похожа на линейную? Прежде всего, тем, что в ней нужно найти значения коэффициентов входных переменных. Но есть и разница: выходное значение преобразуется посредством логистической или нелинейной функции.

Логистическая функция имеет форму большой буквы S, преобразовывая любое значение в число в диапазоне от 0 до 1.

Как и линейная регрессия, логистическая выполняет свою задачу лучше, если уберём лишние и похожие переменные. Модель быстро обучается и отлично подходит для задач бинарной классификации.

3. LDA — линейный дискриминантный анализ

Логистическая регрессия применяется, если нужно отнести образец к одному из 2-х классов. Но если классов более двух, лучше подходит алгоритм LDA. Его представление довольно простое и состоит из статистических свойств данных, которые рассчитаны для каждого класса. Это включает для каждой входной переменной: — дисперсию, рассчитанную по всем классам; — среднее значение для каждого класса.

Предсказания выполняются при вычислении дискриминантного значения для классов и выбора класса, имеющего наибольшее значение. Мы предполагаем, что данные нормально распределены, поэтому удаляем из данных аномальные значения перед началом работы. Этот алгоритм для машинного обучения считается простым и эффективным при решении задач классификации.

4. Древа принятия решений

Древо решений представляют в форме 2-ичного древа, знакомого по структурам данных и алгоритмам. Здесь любой узел — это входная переменная и точка разделения для этой переменной, но при условии, что переменная является числом.

В качестве выходных переменных выступают листовые узлы, используемые для предсказания. Последние выполняются посредством прохода по древу к листовому узлу с последующим выводом значений класса на данном узле.

Древа быстро обучаются, точны для большого спектра круга задач, плюс не нуждаются в особой подготовке данных.

5 . Наивный Байесовский классификатор

Простой, но весьма эффективный алгоритм.

Здесь модель состоит из 2 типов вероятностей, рассчитываемых посредством тренировочных данных, а именно: 1. Вероятность каждого класса. 2. Условная вероятность для каждого класса при каждом значении x.

После расчёта модели её можно применять для предсказания с новыми данными, используя теорему Байеса. Если данные вещественные, то при нормальном распределении рассчитать вероятности совсем несложно.

Байес называется наивным по той причине, что алгоритм предполагает, как будто каждая входная переменная независима. Это довольно сильное предположение, не соответствующее реальным данным. Но несмотря ни на что, алгоритм очень эффективен при решении ряда сложных задач, например, при классификации спама либо распознавании рукописных цифр.

6. KNN

Модель K-nearest neighbors представлена полным набором тренировочных данных. Предсказание для новой точки осуществляется посредством поиска «K-ближайших соседей» в наборе данных с последующим суммированием выходной переменной для этих K-экземпляров.

Появляется лишь вопрос, каким образом определить сходство между разными экземплярами данных. Например, если признаки имеют одинаковый масштаб (допустим, миллиметры), то проще всего использовать евклидовы расстояния — то есть числа, которые можно рассчитать, используя различия с каждой входной переменной.

Для хранения всех данных при использовании KNN может потребоваться много памяти, но зато предсказание будет сделано быстро. Вдобавок ко всему, обучающие данные можно обновлять, дабы сохранить точность предсказаний с течением времени.

Идея KNN может не очень хорошо работать с многомерными данными (при множестве входных переменных), что негативно отразится на эффективности алгоритма (это называют «проклятием размерности»).

7 . LVQ — сети векторного квантования

Главный недостаток KNN — необходимость хранения всего тренировочного набора данных. Это недостатка лишён алгоритм LVQ (Learning vector quantization).

Это алгоритм, представляющий собой набор кодовых векторов. Векторы выбираются случайным образом в начале и в течение ряда итераций адаптируются таким образом, чтобы лучше всего обобщить весь набор используемых данных.

После обучения вектора могут применяться для предсказания по аналогии с KNN. В этом случае алгоритм тоже ищет «ближайшего соседа» (максимально подходящий кодовый вектор), вычисляя расстояние между новым экземпляром данных и каждым кодовым вектором. После этого для наиболее подходящего вектора в качестве предсказания происходит возвращение класса (или числа в случае регрессии). Наилучшего результата удаётся достичь, если все данные находятся в одном диапазоне, к примеру, от 0 до 1.

8. SVM — метод опорных векторов

Популярный и обсуждаемый алгоритм машинного обучения. В нём гиперплоскость (линия, которая разделяет пространство входных переменных) выбирается таким образом, дабы лучше разделить точки в плоскости входных переменных по их классу: 0 либо 1.

В 2-мерной плоскости это легко представить как линию, полностью разделяющую точки всех классов. В процессе обучения алгоритм ищет коэффициенты, помогающие разделять классы гиперплоскостью наилучшим образом.

Разницей называется расстояние между ближайшими точками данных и гиперплоскостью. Оптимальной гиперплоскостью, разделяющей 2 класса, называют линию с наибольшей разницей. И лишь эти точки имеют значение при построении классификатора и определении гиперплоскости. Как раз эти точки и называют опорными векторами. Чтобы определить значения коэффициентов, максимизирующих разницу, используют специальные алгоритмы оптимизации.

Метод SVM считают одним из наиболее эффективных классических классификаторов.

9 . Бэггинг и случайный лес

Тоже весьма популярный алгоритм машинного обучения. По сути, это подвид ансамблевого алгоритма, называемого бэггингом.

Бутстрэп — эффективный статистический метод для оценки какой-нибудь величины вроде среднего значения. Мы берём много подвыборок из данных, считаем среднее значение для каждой, после этого усредняем результаты, чтобы получить лучшую оценку действительного среднего значения. Что касается бэггинга, то в нём задействуется тот же подход, но при оценке статистических моделей чаще используют древа решений. Тренировочные данные разбивают на много выборок, для каждой из них создаётся модель. Если надо сделать предсказание, это делает каждая модель, потом предсказания усредняются, чтобы дать выходному значению лучшую оценку.

Алгоритмы случайного леса примечательны тем, что для всех выборок из тренировочных данных строят древа решений. И при построении для создания каждого узла выбирают случайные признаки. По отдельности полученные модели недостаточно точны, но в случае объединения качество предсказания существенно повышается.

10 . Бустинг и AdaBoost

Бустингом называют семейство ансамблевых алгоритмов. Их суть — создание сильного классификатора на основании нескольких слабых. При этом сначала создают одну модель, потом другую, которая пытается исправить ошибки, которые есть в первой. Модели добавляют до той поры, пока тренировочные данные не будут предсказываться идеально либо пока не превышается наибольшее число моделей.

Что касается AdaBoost, то это первый действительно успешный алгоритм бустинга, разработанный для бинарной классификации. Собственно говоря, именно с него лучше начинать знакомство с бустингом, как таковым. Кстати, современные методы вроде стохастического градиентного бустинга основаны на AdaBoost.

Мастер Йода рекомендует:  Получение данных c веб-сайта без API в 3 строки кода на Python

AdaBoost применяют вместе с короткими древами решений. После создания 1-го проверяется эффективность древа на каждом тренировочном объекте, что позволяет узнать, сколько внимания должно уделить следующее древо всем объектам. Данным, которые предсказать сложно, даётся больший вес, которые легко предсказать — меньший вес. Модели создают последовательно одну за другой, причём каждая из них обновляет веса для последующего древа. После того, как все деревья построены, выполняются предсказания для новых данных. В итоге эффективность каждого древа определяется исходя их того, насколько точным оно было на тренировочных данных.

В алгоритме много внимания уделяют исправлению ошибок моделей, поэтому надо следить, чтобы в данных не было аномалий.

Как выбрать алгоритмы для машинного обучения

Видя обилие алгоритмов, многие задумываются, какой из них выбрать. Ответ зависит от ряда причин: — качество, размер и характер данных; — требуемая срочность выполнения задачи; — доступное вычислительное время; — что вы хотите с этими данными делать.

Даже опытный data scientist не сможет точно сказать, какие алгоритмы будут более эффективны, не попробовав разные варианты. К тому же, мы привели лишь наиболее популярные алгоритмы для машинного обучения, есть и множество других. Впрочем, даже перечисленные алгоритмы станут неплохой отправной точкой.

Гид: алгоритмы машинного обучения и их типы

Каковы типы алгоритмов машинного обучения и когда их использовать

Автор: Катрина Уэйкфилд (Katrina Wakefield), маркетинг, SAS Великобритания

Термины «Машинное обучение» и «Искусственный интеллект» часто путают между собой. На самом деле, машинное обучение входит в область искусственного интеллекта. Ещё машинное обучение порой путают с прогнозной аналитикой (или предсказательным моделированием). И опять, машинное обучение может использоваться для предсказательного моделирования, но это всего лишь один из видов предиктивной аналитики, и его применение шире, чем предсказательное моделирование.

Термин «машинное обучение» ввел американский компьютерный ученый Артур Самуэль в 1959 году как «способность компьютера учиться, не будучи явным образом запрограммированным».

В своём самом простом виде машинное обучение использует запрограммированные алгоритмы, которые получают и анализируют входные данные, а затем прогнозируют выходные значения из допустимого диапазона. По мере поступления новых данных эти алгоритмы обучаются и оптимизируют свою деятельность, повышая производительность и со временем развивая «интеллект».

Существуют 4 типа алгоритмов машинного обучения: обучение с учителем, обучение с частичным привлечением учителя, обучение без учителя и обучение с подкреплением

Какой алгоритм машинного обучения следует использовать?

Эта памятка поможет из множества алгоритмов машинного обучения выбрать подходящий для ваших конкретных задач алгоритм, а статья в целом продемонстрирует, как пошагово пользоваться памяткой.

Обучение с учителем

При обучении с учителем машина обучается на примерах. Оператор обеспечивает алгоритм машинного обучения набором известных данных, который содержит необходимые входные и выходные значения. Алгоритм должен установить, как получаются по данным входам данные выходы. Сам оператор знает решение поставленной задачи; алгоритм выявляет закономерности в данных, учится на основе наблюдений и делает прогнозы. Эти прогнозы затем корректируются оператором. Процесс продолжается до тех пор, пока алгоритм не достигнет высокого уровня точности/производительности.

К категории обучения с учителем относятся классификация, регрессия и прогнозирование.

  1. Классификация: В задачах классификации программа машинного обучения должна сделать заключение на основе наблюдённых значений и определить, к какой категории относятся новые наблюдения. Например, при сортировке электронной почты на спам и полезные сообщения программа просматривает накопленные в прошлом данные и согласно им сортирует новые электронные письма.
  2. Регрессия: В задачах регрессии программа машинного обучения должна оценить – и понять – взаимосвязи между переменными. Предмет регрессионного анализа – одна зависимая переменная и набор других изменяющихся переменных. Это делает анализ особенно полезным для прогнозирования и предсказаний.
  3. Прогнозирование: Это процесс построения предсказаний о будущем на основе данных из прошлого и настоящего, который обычно используется при анализе трендов.

Обучение с частичным привлечением учителя

Обучение с частичным привлечением учителя похоже на обучение с учителем, однако использует как размеченные, так и неразмеченные данные. Размеченные данные – это, по сути, наборы единиц информации с приписанными им метками (тегами). В неразмеченных данных таких меток нет. Комбинируя методы обучения, алгоритмы могут обучаться размечать неразмеченные данные.

Обучение без учителя

В этом случае алгоритм машинного обучения изучает данные с целью выявления закономерностей (паттернов). Не существует справочника с ответами или оператора, который мог бы обучить машину. Напротив, программа сама определяет корреляции и связи на основе анализа доступных данных. При обучении без учителя алгоритму машинного обучения позволено самостоятельно интерпретировать большие наборы данных и делать на их основе выводы. Алгоритм пытается каким-либо образом упорядочить данные и описать их структуру. Это может выглядеть как группировка данных в кластеры или это такое упорядочивание данных, при котором они начинают выглядеть систематизировано.

По мере поступления данных для анализа растёт способность алгоритма принимать решения на основе этих данных, а также точность этих решений.

Методы обучения без учителя включают в себя:

  1. Кластеризация: Кластеризация предполагает группирование наборов похожих данных (на основе определенных критериев). Это полезно для сегментации данных на несколько групп и проведении анализа на основе каждого набора данных по отдельности для поиска закономерностей.
  2. Понижение размерности: Понижение размерности уменьшает количество используемых переменных и отделяет точную искомую информацию.

Обучение с подкреплением

Фокус обучения с подкреплением делается на регламентированные процессы обучения, при которых алгоритм машинного обучения снабжен набором действий, параметров и конечных значений. Определив правила, алгоритм машинного обучения пытается изучить различные варианты и возможности, отслеживая и оценивая каждый раз результат, чтобы определить, какой из вариантов является оптимальным. Подкрепляемое обучение – это метод проб и ошибок для машины. Она учится на прошлом опыте и меняет свой подход, реагируя на новую ситуацию, пытаясь достичь наилучшего возможного результата.

Обзор самых популярных алгоритмов машинного обучения

Модель логистической регрессии вычисляет взвешенную сумму входных переменных, похожую на линейную регрессию, но она пропускает результат через специальную нелинейную функцию, логистическую функцию или сигмовидную функцию для получения ответа да-нет.

Сигмоидальная / логистическая функция задается следующим уравнением.

Цель метода k-ближайших соседей — классифицировать объекты на основе их сходства (например, функции расстояния).

Метод k-ближайших соседей учится в процессе: он не нуждается в предварительной фазе обучения и начинает классифицировать точки данных на основе большинства голосов их соседей.

Объект присваивается тому классу, за который голосует большинство ближайших соседей.

Давайте рассмотрим задачу присвоения зеленого круга классу 1 или классу 2. Рассмотрим частный случай метода k-ближайших соседей, когда k=1. В этом случае метод k-ближайших соседей присвоит зеленому кругу класс 1. Теперь давайте увеличим количество ближайших соседей до k=3, то есть 3 ближайших соседа. Как вы можете увидеть на рисунке: внутри круга находятся два объекта класса 2 и один объект класса 1. Метод k-ближайших соседей классифицирует зеленый круг как объект класса 2, поскольку они составляют большинство.

Метод опорных векторов изначально использовался для анализа данных. Набор обучающих примеров подается алгоритму метода опорных векторов, а затем алгоритм строит модель, которая начинает присваивать новые данные одной из категорий, поданных на вход модели ранее.

Алгоритм метода опорных векторов создает гиперплоскость (это плоскость в пространстве размерности больше трех), которая отделяет классы. Когда алгоритм обрабатывает новую точку входных данных, она классифицируется в зависимости от того, с какой стороны находится от построенной моделью гиперплоскости.

Обзор самых популярных алгоритмов машинного обучения

Некоммерческая лаборатория OpenAI, созданная в 2015 году при участии Илона Маска, продолжает экспериментировать с искусственным интеллектом. В этот раз ее сотрудники обучили компьютер игре в прятки. Для этого они разместили на небольшой виртуальной площадке синих и красных человечков. Синие прятались, а красные — искали своих противников.


Правила игры со временем усложняли: синей команде давали фору, менялось количество участников, на карту добавляли дополнительные объекты — например, ящики и трамплины. Со временем синие человечки поняли, что могут укрываться за ящиками. С их помощью они даже отгораживались от своих соперников. В свою очередь красные научились обходить препятствия и перебираться через виртуальные стены, используя все те же ящики.

При этом сотрудники OpenAI не программировали подобное поведение. Искусственный интеллект дошел до всего сам — на это понадобилось более миллиона игр. Его действия основывались на алгоритмах, схожих с алгоритмами человеческого поведения.

Фотошоп-мастерам на заметку

NVIDIA продемонстрировала искусственный интеллект способный в реальном времени преобразовать рисунок в Paint в фотореалистичное изображение.

Видео с комментариями:

Статья в блоге NVIDIA и репозиторий в котором «скоро» будет исходной код.

Докажите, что вы не человек

Билайн Россия первым в России совместно с «Лиза Алерт» разработал нейросеть для поиска пропавших людей

Состоялось то, чего мы очень ждали и о чём мечтали: Билайн представил решение «Beeline AI — Поиск людей» на базе нейросети для обработки фотографий, полученных с беспилотных летательных аппаратов (БПЛА) в местах поиска пропавших людей. Эта технология, разработанная совместно с нами, позволит сократить время на просмотр и сортировку полученных с БПЛА снимков в 2,5 раза. В дальнейшем технология будет адаптироваться к специфике поиска и совершенствоваться.

Мы начали активно использовать беспилотники в прошлом году, наращивая интенсивность, и успешно находить пропавших с помощью нашей группы просмотра снимков. Но если в 2020 году за весь год мы нашли три человека благодаря снимкам с дронов, то на сегодняшний день нам удаётся каждую неделю спасти как минимум одного потерявшегося с помощью дрона.

Анализ снимков — процесс трудоемкий: на это нужно не только много времени, но и достаточное количество людей, готовых отсматривать фотографии. Для привлечения к этой работе большого количества добровольцев отряд создал специальный ресурс watcher.lizaalert.ru , где люди, физически не принимающие участие в поиске, могут помогать отряду онлайн – находясь дома или в офисе у компьютера. Но люди устают, и отсматривать снимки в течение нескольких часов, не снижая эффективности, – задача почти невыполнимая, а цена ошибки, как вы понимаете, очень высока.

С одного дня поисков с помощью дронов отряд получает порядка 2500 фотографий, на проверку которых группа из 30 человек тратит в среднем 5-7 часов. Благодаря «Beeline AI — Поиск людей» время на анализ 1 фотоизображения занимает 2-3 секунды, что позволяет сократить процесс сортировки всего контента до 1-2,5 часов в зависимости от количества фотографий. По мере обучения нейросети скорость и точность ее работы будет расти. Важная особенность нейросети – это её способность обучаться распознавать объекты на снимках, сделанных с высоты от 40 до 100 метров, с высоким уровнем визуального «шума» — деревья, природный ландшафт, сумерки и т.д.

Первоочередная задача «Beeline AI — Поиск людей» — убрать «пустые» и неинформативные фотографии, на которых точно нет человека или атрибутов, указывающих, что в этом месте был человек. Это позволяет группе анализа сразу сосредоточиться на потенциально результативных снимках.

Первичные тесты совместно с отрядом «Лиза Алерт» показали, что точность модели на тестовых изображениях приближается к 98%. Потенциально нейронная сеть способна находить людей и предметы во всех местах поиска, таких как лес, болота, поля, города, независимо от времени года и одежды человека, так как алгоритм настраивается на работу в любое время года и сможет распознавать нестандартное положение тела в пространстве, например, сидящего, лежащего или частично прикрытого листвой.

Мы очень рады, что у нас снова есть повод сказать огромное спасибо нашему замечательному и давнему другу – Билайну, при поддержке которого у нас функционирует бесплатная горячая линия, осуществляется смс-рассылка с информацией о поисках и действуют островки безопасности для потерявшихся детей! Мы видели, как сотрудники Билайна, разрабатывающие для нас эти решения, болеют душой за результат, понимая, что они создают инструменты для спасения человеческих жизней. Мы хотели бы поблагодарить всю команду, участвовавшую в разработке этого крайне важного для нас проекта, и лично Евгению Чистову, руководителя по корпоративной социальной ответственности ПАО «Вымпелком» (Билайн), которая давно стала настолько близким другом «Лиза Алерт», что мы считаем её таким же, как мы, представителем отряда.

Как быстро получить обзор методов машинного обучения?

Обзор не случайно назван «Машинное обучение для людей». Текст написан очень живо, читается на одном дыхании.

Сам автор определяет его как «большое введение для тех, кто хочет наконец разобраться в машинном обучении — простым языком, без формул-теорем, зато с примерами реальных задач и их решений». Так оно и есть. Удачи!

Обзор называется «Машинное обучение для людей», и, действительно, текст написан очень живо и интересно. Читается на одном дыхании.

Сам автор описывает статью как «большое введение для тех, кто хочет наконец разобраться в машинном обучении — простым языком, без формул-теорем, зато с примерами реальных задач и их решений».
Так оно и есть. Удачи!

Введение в машинное обучение

Перевод статьи разработчика алгоритмов машинного обучения, бизнес-консультанта и популярного автора Ганта Лаборде «Machine Learning: from Zero to Hero».

Начнешь c “Зачем?”, придешь к “Я готов!”

Если вы мало знаете об основах машинного обучения, то эта статья как раз для вас. Я буду постепенно излагать введение в машинное обучение, склеивая дружелюбный текст с вдохновляющими примерами. Присядь и расслабься, это займет некоторое время.

Почему машинное обучение сейчас в тренде

Искусственный интеллект (далее ИИ) всегда имел применение, начиная от перемещения ракетки в пинг понге и заканчивая выполнением комбо в Street Fighter.

ИИ опирается на представление программиста о том, как программа должна себя вести. Но как часто становится понятно, не все программисты талантливы в программировании искусственного интеллекта. Стоит только погуглить “эпичные фейлы в играх” и наткнуться на глюки в физике, даже у опытных разработчков.

Несмотря на это, компьютер поддается обучению для игры в видеоигры, понимания языка и распознавания людей и предметов. Этот навык исходит из старой концепции, которая только недавно получила необходимые вычислительные мощности для существования вне теории. Я имею в виду машинное обучение (ML, Machine learning).

Не продумывайте сложные алгоритмы самостоятельно — обучите компьютер создавать собственные сложные алгоритмы. Как это будет работать? Алгоритм не столько написан, сколько выведен. Посмотри это короткое видео, с помощью анимации оно должно дать понимание общего принципа создания ИИ.

И как возможно такое, что мы даже не понимаем устройство рабочего алгоритма? Прекрасным визуальным примером был ИИ, написанный для прохождения игр Марио. Люди хорошо знают, как нужно играть в сайд-скроллеры, но это безумие пытаться определить стратегию игры для ИИ.

Впечатлены? Как это возможно? К счастью, Элон Маск представил некоммерческую компанию, которая предоставляет возможность подключения ИИ к любым играм и задачам с помощью дюжины строк кода. Посмотрите, как это работает.

Зачем следует использовать машинное обучение?

У меня два ответа на вопрос, почему вас должно это заботить. Во-первых, с помощью машинного обучения компьютеры выполняют задачи, которые раньше они не выполняли. Если хотите создать что-то новое для всего мира, вы можете сделать это, используя машинное обучение.

Во-вторых, если не влияете на мир, мир повлияет на вас. Компании инвестируют в ML, и эти инвестиции уже меняют мир. Лидеры мысли предупреждают, что нельзя позволить алгоритмам машинного обучения быть в тени. Представьте себе, если бы монополия из нескольких корпораций контролировала Интернет. Если мы не “возьмемся за оружие”, наука не будет нашей.

Мастер Йода рекомендует:  Руководство по выбору и изучению языков программирования

Christian Heilmann высказал правильную мысль в беседе о машинном обучении:

“Можно надеяться, что остальные будут использовать эту мощь только в мирных целях. Я, например, не рассчитываю на эту милость. Предпочитаю играть и быть частью этой революции. И вы присоединяйтесь”.

Хорошо, теперь я заинтересован…

Концепт полезный и веселый. Но что за дичь там в действительности творится? Как это работает? Если хочешь сразу погрузиться, советую пропустить раздел и перейти к следующему “С чего мне начать?”. Если вы уже мотивированы делать модели ML, эти видео не понадобятся.

Если ты все еще пытаешься понять, как такое вообще возможно, следующее видео проведет тебя через логику работы алгоритмов, используя классическую задачу ML — проблему распознавания рукописного текста.

Классно, не правда ли? Видео демонстрирует, что каждый новый слой становится проще, а не сложнее. Будто бы функция пережевывает данные в более мелкие кусочки, которые потом выстраиваются в задуманный концепт. Поиграйтесь с этим процессом здесь.

Занятно наблюдать, как данные проходят через натренированную модель, но ты также можешь пронаблюдать тренировку собственной нейронной сети.

Классический пример машинного обучения в действии — датасет прямиком из 1936-го года, называемый ирисами Фишера. На презентации эксперта JavaFX, посвященной машинному обучению, я узнал, как использовать этот инструмент, чтобы визуализировать прикрепление и обратное распространение весов к нейронам в нейронной сети. Понаблюдайте за тем, как тренируется нейронная сеть.

Обучение нейронной сети Ирисы

Готовы стать Эйнштейном новой эры? Прорывы происходят каждый день, поэтому начинайте сейчас.

С чего мне начать?

Доступных ресурсов много. Я рекомендую два подхода.

Основы

С этим подходом вы поймете машинное обучение вплоть до алгоритмов и математики. Знаю, этот путь кажется тяжким, но зато как круто будет по-настоящему проникнуться в детали и кодить с нуля!

Если хочешь получить силу в этой сфере и вести серьезные обсуждения о ML, то этот путь для тебя. Советую пройти курс по искусственным нейронным сетям. Этот подход позволит вам изучать ML на вашем телефоне, убивая время, например, в очереди. Одновременной проходите курс о машинном обучении.

Курсы могут показаться слишком сложными. Для многих это причина не начинать, но для других это повод пройти это испытание и получить сертификат о том, что вы справились. Все вокруг будут впечатлены, если справитесь, потому что это действительно не просто. Но если вы это сделаете, получите понимание о работе ML, которое позволит вам успешно применять его.

Гонщик

Если вы не заинтересованы в написании алгоритмов, но хотите использовать их для создания сайтов и приложений, то используйте TensorFlow и погрузитесь в crash course.

TensorFlow — это библиотека с открытым исходным кодом для машинного обучения. Ее можно использовать любым способом, даже с JavaScript. А вот crash source.

Услуги ML

Если проходить курсы не ваш стиль, то пользуйтесь ML как услугой. Технические гиганты владеют натренированными моделями, а сектор услуг по машинному обучению растет.

Предупреждаю, что нет гарантии, что ваши данные будут в безопасности или вообще останутся вашими, но предложения услуг по ML очень привлекательны, если вы заинтересованы в результате и имеете возможность загрузить данные на Amazon/Microsoft/Google.

Давайте быть созидателями

Я все еще новичок в мире ML и счастлив осветить путь для других, путь, который даст нам возможность завоевать эру, в которой мы оказались.

Крайне важно быть на связи со знающими людьми, если изучаете это ремесло. Без дружеских лиц и ответов, любая задача покажется трудной. Возможность спросить и получить ответ кардинально облегчает ситуацию. Дружелюбные люди всегда помогут дельными советами.

Надеюсь, эта статья вдохновила вас и ваше окружение изучать ML!

Профессия Data Scientist: машинное обучение

Станьте специалистом по нейросетям и машинным алгоритмам, получите одну из самых востребованных профессий современности. Постройте карьеру в крупной технологической компании — у нас или за рубежом.

Первым 20 участникам курса — скидка 20%.

  • Подходит студентам без опыта
  • Преподаватели практики
  • Реальный проект для диплома
  • Зарплата от 90 000 р. в месяц

Курс идеально подойдет

Новичкам

Освоите технологии машинного обучения, получите необходимый набор навыков, который откроет путь к построению карьеры в Data Science и Machine Learning. Вы сможете найти интересную работу и показать себя, даже если до этого никогда не программировали.

Программистам

Сможете перейти в Data Science и обеспечить себе будущее. Научитесь создавать аналитические системы и алгоритмы машинного обучения, работать с нейросетями — и получите более престижную и высокооплачиваемую работу.

Менеджерам и бизнесу

Получите структурированные прикладные знания о Data Science от практиков. Научитесь использовать данные для построения прогнозов и оптимизации бизнес-процессов и переведете компанию на новый уровень развития.

Чему вы научитесь

Новые знания и навыки можно будет сразу же применять на практике.

Научитесь программировать на Python

это самый популярный язык для работы с данными.

Сможете работать с источниками данных

CSV, XML и XLSX, JSON.

Освоите визуализацию данных

и сможете разрабатывать дашборды или интерактивную инфографику.

Опробуете разные модели машинного обучения

и откроете себе двери в новые интересные проекты.

Поработаете с машинным зрением

и сможете найти себе работу в машиностроении и робототехнике.

Напишете рекомендательную систему

для реального клиента и добавите ее себе в портфолио.

Записаться на курс скидка 20% первым студентам

Программа курса

Программа курса содержит 4 основных блокa.

Аналитика для машинного обучения

Машинное обучение. Начальный уровень

Машинное обучение. Средний уровень

Получите полную программу и индивидуальную консультацию

Преподаватели

  • Валентин Пановский преподаватель МАИ, Chief Data Scientist в Skillbox
  • Михаил Овчинников ведущий инженер-программист Badoo
  • Алла Тамбовцева преподаватель НИУ ВШЭ
  • Александр Джумурат руководитель команды разработки рекомендательной системы в ivi.ru
  • Дмитрий Коробченко Deep Learning R&D, инженер и менеджер в NVIDIA
  • Алексей Мастов Deep Learning инженер в NVIDIA
  • Лидия Храмова Team Lead Data Scientist группы бизнес-моделирования в Qiwi

Как проходит обучение

Вы выполняете домашние задания и открываете доступ к новому уникальному контенту по теме. Достаточно выделить 3–5 часов в неделю.

Изучаете
тему

В курсе — полезные видеоуроки.

Выполняете домашнее задание

В том темпе, в котором вам удобно.

Общаетесь с наставником

Закрепляете знания и исправляете ошибки.

Защищаете дипломный проект

И дополняете им свое портфолио.

Ваше резюме после обучения

Аделина Ветрова специалист по машинному обучению

Ожидаемая зарплата от 90 000

Python Язык программирования общего назначения, применяется для работы с данными.

Jupyter Notebook Командная оболочка для интерактивных вычислений.

NumPy Библиотека с открытым исходным кодом для Python.

Pandas программная библиотека на Python для обработки и анализа данных.

SQL Язык программирования для работы с реляционными БД.

Matplotlib библиотека на Python для визуализации данных 2D-графикой.

SciPy библиотека для Python с открытым исходным кодом для выполнения научных и инженерных расчётов.

Scikit-Learn библиотека машинного обучения для Python.

Keras Открытая нейросетевая библиотека, написанная на Python.

TensorFlow Открытая программная библиотека для машинного обучения от Google

Ключевые навыки:

  • Python для работы с данными
  • чтение и запись данных, работа с библиотеками;
  • визуализация данных на Matplotlib;
  • работа с нейронными сетями;
  • владение методом Q-learning;
  • написание рекомендательных систем.
  • машинное обучение: регрессия, классификация, кластеризация;

Диплом Skillbox

Подтверждает успешное прохождение курса «Профессия Data Scientist: машинное обучение»

Профессия Data Scientist: машинное обучение

Стоимость обучения

Скидка 20% первым 20

Стоимость обучения 88 500

2 950 Рассрочка без первого взноса

70 800 Для первых 20 студентов

Гарантия возврата денег в течение 14 дней

Запишитесь на курс

Дата начала: 10 ноября

Осталось: 15 мест

О Skillbox

Максимально практическое обучение от лидеров digital-рынка. Курсы от компаний, работающих на реальных проектах.

После обучения вы можете трудоустроиться в эти компании или к партнёрам университета.

студентов учатся на наших курсах

студентов довольны преподавателями

выпускников получают карьерный рост

выпускников довольны курсом и результатом

Часто задаваемые вопросы

Я никогда не программировал. У меня получится?

Курс подходит для людей, не имеющих навыков работы с данными, языками программирования или нейросетями. Наши методики и система поддержки позволят вам научиться всему с нуля.

Какой график обучения? Получится ли совмещать его с работой?

Вы можете работать с материалами курса в любое удобное время, двигаясь по программе в подходящем вам темпе. Более того, все уроки будут доступны и по окончании курса, навсегда, так что вы сможете освежить свои знания в любой нужный момент. Весь формат обучения построен таким образом, чтобы вы могли совмещать его с работой, учебой и личной жизнью.

Сколько часов в неделю мне нужно будет уделять учебе?

Вы сами выбираете нагрузку и скорость, с которой будете проходить курс. Хотите — занимайтесь два часа в неделю, хотите — шесть часов в день. Но в любом случае не забывайте отдыхать.

Я могу общаться с преподавателем?

Да, у вас будет доступ к закрытому Telegram-чату. Преподаватель будет лично комментировать домашние задания и давать полезные советы. Так вы сможете перенять уникальный опыт, профессиональные знания и лайфхаки от нашего преподавателя.

Действуют ли какие-нибудь программы рассрочки?

Да, вы можете купить курс в рассрочку — и спланировать свой бюджет, разбив всю сумму на мелкие ежемесячные платежи.

А я точно смогу трудоустроиться?

Курс дает достаточно знаний, чтобы получить позицию Data Scientist. Конечно, многое будет зависеть и от вас самих.

Записаться на курс или получить консультацию

Появились вопросы по курсу?

Оставьте ваш номер телефона, и наш специалист свяжется с вами, чтобы дать подробную информацию.

г. Москва, метро Октябрьская,
Ленинский проспект, дом 6, строение 20

Алгоритмы машинного обучения простым языком. Часть 1

Как недавнего выпускника буткемпа по машинному обучению от Flatiron School меня буквально затопило советами о том, как стать асом в прохождении интервью. Я заметил, что из социальных компетенций чаще всего упоминают умение объяснять принципы работы сложных алгоритмов машинного обучения человеку, который в этом совершенно не разбирается.

В этой статье я поделюсь тем, как я рассказал бы об этих алгоритмах своей бабушке. В некоторых объяснениях я зайду довольно глубоко, в некоторых лишь пройдусь поверхностно по алгоритму. Надеюсь, что всё из этого будет понятно и полезно тем, кто никогда в жизни не занимался анализом данных. Рассмотрим три темы:

  • Градиентный спуск и линия наилучшего соответствия.
  • Линейная регрессия (включая регуляризацию).
  • Логистическая регрессия.

Прежде всего, давайте разберёмся, в чём разница между алгоритмом и моделью. Хорошее объяснение есть на Quora:

Модель — как автомат с едой, который получает что-то за вход (деньги) и выдаёт какие-то выходные значения (например, газировку)… Алгоритм — это то, как обучается модель принимать решение в зависимости от входных данных. Например, алгоритм на основе ценности денег, которыми вы расплатились в автомате, и стоимости выбранного продукта будет определять, достаточно ли денег для покупки и какую сдачу вы должны получить.

То есть алгоритм — это математическая сила, стоящая за моделью. Одна и та же модель может использовать разные алгоритмы, что и будет их отличать. Алгоритм же без модели — математические уравнения, которые практически ничего не значат.

Градиентный спуск и линия наилучшего соответствия

(Хоть первое и не считается алгоритмом машинного обучения, его понимание важно для понимания того, как происходит оптимизация алгоритмов)

И вот объяснения:

Суть градиентного спуска в том, что он позволяет нам найти самое точное предсказание на основе данных.

Скажем, у тебя есть большой список роста и веса людей, которых ты знаешь, и тебе нужно каким-то образом отобразить данные на графике. Это будет выглядеть как-то так:

Теперь допустим, что проходит соревнование. Его суть заключается в том, что участникам нужно угадать вес человека по его росту. Угадавший получает денежный приз. Кроме того, чтобы оценивать вес человека на глаз, ты бы опиралась на набор данных о твоих знакомых, да?

Так, основываясь на графике выше, скорее всего, ты бы могла дать ответ, близкий к правильному, если бы у тебя был график тренда данных. Этот график-линия показывал бы ожидаемый вес для каждого значения роста. Тогда ты бы просто нашла значение роста, двигаясь параллельно оси весов, дошла бы до линии тренда и определила бы вес, понятно?

Но как найти эту идеальную линию? Возможно, ты могла бы построить ее вручную, но это заняло бы кучу времени. Здесь и нужен градиентный спуск!

Мы ищем эту линию при помощи минимизации так называемой “остаточной суммы квадратов”. Это просто сумма квадратов разности между значением нашей линии и точек, то есть то, насколько точки далеки от линии. Мы получаем всё меньшие значения суммы квадратов, меняя положение линии на графике: нам надо поместить нашу линию куда угодно, главное, чтобы она была как можно ближе к большинству точек.

Мы можем углубиться в это и обозначить каждый из параметров линии на кривой стоимости. При помощи градиентного спуска мы достигаем минимума кривой стоимости, где и находится минимум остаточной суммы квадратов.

У градиентного спуска есть ещё множество параметров, например, размер шага (то есть насколько быстро мы хотим достичь низа скейтбордной рампы) или скорость обучения (то, в каком направлении мы хотим достичь низа). В общем, суть такова: градиентный спуск позволяет найти линию наилучшего соответствия при помощи минимизации расстояния между точками графика и линией. Линия же, в свою очередь, позволяет предсказывать необходимое.

Линейная регрессия

Всё просто: линейная регрессия — это то, как мы анализируем силу зависимости между одной переменной (“результирующая переменная”) и одной или несколькими другими переменными (“независимыми переменными”).

Характерная черта линейной регрессии, как понятно из названия, заключается в том, что связь между этими переменными линейная. Что это значит в нашем случае: когда мы строим график зависимости независимых переменных от результирующей, точки будут располагаться примерно на одной линии, как показано ниже.

(Если ты не можешь построить график, то попробуй ответить на вопрос: изменение независимых переменных на определённую величину вызывает в результирующей переменной изменение на ту же величину? Если да, то данные линейно зависимы.)

Ещё одна важная деталь: результирующая переменная или то, что меняется с изменением наших других переменных, непрерывна. Что это значит?

Скажем, мы хотим измерить зависимость количества осадков от высоты над уровнем моря в штате Нью-Йорк. Тогда наша результирующая переменная — дождливость, независимая переменная — высота над уровнем моря. Если будем использовать линейную регрессию, то результирующую переменную нужно сформулировать как, например, “сколько дюймов осадков выпадает за определённое количество времени”, а не “дождливо/не дождливо”. Наша результирующая переменная должна быть непрерывной — значит она может быть любым числом (даже дробным).

Самое классное в линейной регрессии — это то, что она может предсказывать, используя линию наилучшего соответствия! Если мы запустим линейную регрессию на нашей задаче, мы можем найти эту линию, как и в градиентном спуске. Затем мы можем применять обученную модель для того, чтобы узнать количество осадков на определённой высоте.

Добавить комментарий