Искусственный интеллект как и где изучать — отвечают эксперты


Оглавление (нажмите, чтобы открыть):

Чему учат на факультете искусственного интеллекта в GU

Что за специальность и где работать

— Где востребованы возможности искусственного интеллекта и в каких сферах смогут работать выпускники факультета?

— Направление Data Science появилось как ответ на распространение интернета и всеобщую информатизацию. У бизнеса и других структур копятся массивы данных, с которыми нужно что-то делать. Крупные банки, провайдеры интернета и телефонии, поисковые сервисы, социальные сети аккумулируют сведения о пользователях и хотят извлекать из этого выгоду.

Пользователи, в свою очередь, хотят быстро отсеивать нужную информацию и получать только интересные предложения. Товары и услуги нужны всем, но реклама раздражает, потому что зачастую навязывает что-то неактуальное.

И тут на сцену выходит искусственный интеллект: он может анализировать клиентскую базу любого размера и составлять персонализированные предложения. Он может строить прогнозы на основе прошлых действий пользователя. Например, банки могут автоматически рассчитать вероятность того, что человек вернет кредит. И хотя у них заложены некоторые риски, прогнозирование важно, чтобы не разориться в кризис.

Партнер нашего факультета ИИ — «МегаФон». Это компания, которая всерьез работает с большими данными, чтобы лучше обслуживать своих клиентов. Занятиям со специалистами «МегаФона» у нас будет посвящена целая учебная четверть.

Кроме того, когда мы говорим об искусственном интеллекте, подразумеваем сразу несколько родственных направлений: data science, машинное обучение, data engineering. Базовые понятия и инструменты у них одни и те же. Поэтому наш выпускник сможет себя попробовать там, где ему интереснее.

— А бизнес не боится доверять свои процессы ИИ? Ведь цена ошибки может быть высока.

— Поздно бояться — бизнес уже вовсю пользуется искусственным интеллектом и во многих ситуациях не может без него обойтись. Понятно, что система ошибается. Но и люди ошибаются: издалека можно пень за человека принять. И все же автоматизация позволяет избежать множества проблем, связанных с человеческим фактором: устал, отвлекся, не успел. Плюс анализ big data без ИИ невозможен в принципе.

Или даже возьмем задачу попроще. Вот надо вам расшифровать аудиозаписи — перевести их в текст. А записей таких десятки. Нанимать наборщиков — дорого и неэффективно. Система распознавания речи сильно упростит задачу. Да, она будет ошибаться, особенно в пунктуации и незнакомых ей словах, но все равно исправить записанное программой проще и быстрее, чем набрать все с нуля. Кто защищал диссертацию и вынужден был часами просиживать за расшифровкой стенограмм, меня поймет — процесс довольно мучительный.

— А помимо крупных компаний куда-то реально трудоустроиться?

— Сфера применения искусственного интеллекта не ограничивается обработкой больших данных. Одно из преимуществ ИИ в том, что он позволяет решать сложные задачи усилиями небольшого штата сотрудников.

Стартапам и среднему бизнесу специалисты по искусственному интеллекту нужны, чтобы разрабатывать умные сервисы: голосовые помощники, системы поиска по картинкам и музыке, программы перевода речи в текст, приложения с функцией распознавания лиц, службы проверки контента на плагиат и так далее.

Все мы знаем софт, который накладывает маски и эффекты на изображение с веб-камеры: пририсовывает рожки к голове, бороду к подбородку или маску слона на все лицо. Такого плана вещи можно писать в одиночку.

Медицинские решения на основе ИИ способны выявлять тревожные симптомы и предупреждать о необходимости обратиться к специалисту. Можно сфотографировать на смартфон родинку и проверить ее на признаки злокачественного новообразования. Если это мотивирует кого-то вовремя пройти обследование — уже хорошо.

Суть в том, что вариантов применения технологий, которым мы учим, практически неограниченное количество. И в обозримом будущем круг задач, которые можно решать с помощью ИИ и машинного обучения, будет только расти. Поэтому наш выпускник, если у него появятся новаторские идеи, сможет запускать и собственные проекты.

Цели и ценности

— Кто преподает на факультете и по какому принципу вы этих людей искали?

— Мы отбирали преподавателей, которые добились успеха как специалисты в сфере data science и при этом умеют преподнести материал в практическом ключе. Они понимают нашу аудиторию: студенты хотят освоить профессию и скорее начать работать. У большинства людей, которые приходят учиться в GU, нет вузовского образования и опыта — знания нужно закладывать с нуля. Поэтому нас не устраивает подход «оттарабанил лекцию и пошел дальше». Мы на реальных примерах показываем, как получить результат, и объясняем, почему именно так. Мы выбираем задачи, с которыми человек столкнется на собеседованиях и на работе, помогаем вписаться в существующий рынок.

Автор курсов и декан факультета — Сергей Ширкин — специалист-практик, который накопил обширные знания сразу по нескольким направлениям. Он работал с базами данных (это data engineering), применял ИИ в банковской сфере, в области распознавания изображений. Когда Сергей познакомился с нашей концепцией, он ее одобрил и помог нам наладить учебный процесс.

О кривой обучения и не страшной математике

— «Искусственный интеллект», «нейронные сети» — это звучит сложно и таинственно. Насколько высок порог вхождения в профессию?

— Речь не идет о чем-то тяжелом и доступном лишь избранным. Можно провести аналогию с профессией веб-разработчика: спрос на специалистов велик, а порог вхождения не слишком высок. Отсюда растущая популярность data science, но отсюда же и нехватка настоящих профи при обилии начинающих.

Как и на других факультетах, мы ведем студента от элементарных задач к серьезным проектам, которые можно показать работодателю. Продвинутых программистских навыков не требуется, но важно изучить Python, алгоритмы и структуры. То же самое касается математики: если раньше вы учили ее только в школе и что-то уже забыли, это нормально. Все необходимое из школьного курса мы в любом случае повторим на занятиях.

Главное — не рассчитывать, что «оплатил абонемент на фитнес — мышцы сами растут». Сразу говорю, этого не будет. Вы получаете знания и инструменты, а дальше трудитесь над учебными проектами, ищете решения, задаете вопросы, читаете книги. Мы вас направляем, помогаем не заблудиться в трудностях, объясняем, чего будет ждать от вас работодатель.

Кстати, нашим студентам не стоит бояться конкуренции с выпускниками вузов. Потому что с вузовской теоретической базой специалистом по data science не станешь — придется долго набирать практику. А вот после учебы у нас можно сразу начать карьеру в крупной компании или присоединиться к перспективному стартапу.

— От математики никуда не деться?

— На самом деле, научить обработке данных можно и без математики: по принципу «нажми на кнопку — получишь результат». Но мы ведь не обезьянок в цирк готовим. Специалист должен знать, как работают инструменты, которыми он пользуется. Иначе любая незнакомая проблема поставит его в тупик. Когда человек понимает математическую составляющую задачи, он сам определяет, какой инструмент лучше подойдет.

У нас математика исключительно прикладная: мы все закрепляем на примерах и не оставляем места путанице. Человеческий мозг так устроен, что нужное для дела — запоминает, остальное — забывает.

Я сам изучал механику и математику в вузе. У меня не складывались ассоциативные связи между тем, что нам дают, и тем, где это можно применить. Например, я не понимал, что такое нормальное распределение: формулы знал, но понятие оставалось для меня абстракцией. И только позже, на работе, мне одна девушка-HR объяснила, что это значит. Доценты и профессора не смогли этого доступно растолковать, а ей удалось.

Когда вы видите, как теория работает в конкретной ситуации и куда ее можно приложить, все меняется — у вас складывается общая картина. Практических задач в сфере анализа данных и искусственного интеллекта сейчас много как никогда. Поэтому я уверен, что мы сможем заинтересовать студентов, увлечь их профессией.

— Если все не так сложно, почему на факультете ИИ учатся полтора года, а не четыре месяца, например?

— Потому что мы не обзор профессии даем, как бывает на других курсах, а учим с нуля людей, мало знакомых с математикой. Более того, мы считаем, что студентам с хорошим теоретическим заделом все равно надо математику перепроходить в контексте практических задач. Мы предлагаем не тратить личное время на предварительную подготовку, а сразу учиться профессии. Лучше сэкономленное время потом посвятить повышению квалификации и углубиться в те области, которые вам интересны.

— Что именно из математики вы даете на факультете?

— Для начала мы повторим, что такое график и производная. Дальше зададим основы матанализа, линейной алгебры и комбинаторики. С интегралами познакомимся в общих чертах — без глубокого погружения. Будем брать самые простые вещи, которые в сфере ИИ работают и помогают решать актуальные для рынка задачи. При наличии мотивации студент с помощью преподавателя разберется в этих темах, даже если раньше с ними не сталкивался.

Практика

— С какими инструментами студенты научатся работать?

— Большинство связанных с ИИ вакансий требуют знания Python. Поэтому мы изучаем этот язык и его библиотеки, позволяющие работать с векторами, матрицами, нейронными сетями. Это перекрывает 99 % задач, которые могут возникнуть. Специализированных инструментов много: Pandas, NumPy, Tensor Flow, Keras, Theano, Matplotlib, Seaborn, Scikit-Learn. Чтобы использовать все это осознанно и самостоятельно, мы математику и учим.

Мы также будем изучать вспомогательные вещи. Например, Linux и регулярные выражения нужны, чтобы уметь вычленить из текста нужные фрагменты. Основы HTML тоже объясним — не для верстки, конечно, а чтобы студент представлял себе структуру DOM и мог к ней обращаться. Все это пригодится для сбора данных в интернете.

В то же время мы старались не перегружать курс. Например, большинство библиотек, о которых мы сейчас говорили, ради быстродействия написаны на языке С. Но это не значит, что нам надо его учить. Для начала работы по специальности этого не требуется, и мы на этом не останавливаемся. Понятно, что нет предела совершенству, и если выпускник захочет создавать свои инструменты, он может C изучить. Я всегда таких людей приветствую. Но мы даем набор навыков для трудоустройства и дальнейшего саморазвития.

— Какие проекты студенты делают, чтобы набрать опыт и что-то записать в резюме?

— Проекты будут двух типов: наши и партнерские. Первый наш практический курс учит собирать и обрабатывать данные сети Интернет. Здесь студенты опробуют несколько подходов к задаче. Сначала мы будем «парсить» страницы: напишем на Python «паука», который пробежится по нужным адресам и скачает искомую информацию. Этот метод нужен, когда сайт не хочет отдавать данные сам.

Дальше научимся обращаться к сайтам по-хорошему — через программный интерфейс, он же API (Application Interface). То есть отправлять серверу запрос и получать информацию. Также разберемся, какие есть сервисы открытых данных и как ими пользоваться. Студенты выберут подход, с помощью которого соберут данные в интересующей их сфере. Кто-то решит в культурном наследии порядок навести, другой будет медицинскую статистику собирать, третий составит базу по туроператорам и пассажирским перевозкам. Кстати, на будущее можно и систему сбора релевантных вакансий написать.

Следующий проект будет связан с машинным обучением. Построим модель прогнозирования, чтобы компьютер не просто проверял гипотезы, а формировал их на основе имеющихся данных. Здесь мы тоже разберем два подхода: сначала напишем классификатор, затем создадим нейронную сеть, а по итогу студент сам решит, что использовать в отчетном проекте.

Еще будет проект, где понадобится решать задачи с использованием машинного зрения или с распознаванием естественного языка — на выбор.

Также студенты освоят платформу Kaggle и потренируются в спортивном анализе данных. Победы в таких состязаниях на рынке ценятся и приравниваются к профессиональным достижениям. Даже если вы ни дня не работали в data science, но у вас хорошие результаты на Kaggle, вами заинтересуются крупные работодатели.

Проект от «МегаФона» будет посвящен обработке больших данных, которые сам партнер и предоставит.

Мы ведем переговоры с Maps.me о проекте с распознаванием изображений. Студенты напишут приложение, которое будет брать спутниковые карты Open Street Map и оцифровывать: размечать контуры водоемов, зданий, дорог, — а затем все это грузить обратно в систему. Кто «народные карты» рисовал или помогал проекту Wikimapia, представляет, о чем речь. Мы покажем, как этот процесс автоматизировать. Это еще и полезная миссия, потому что с подобными офлайн-картами можно ориентироваться там, где нет интернета.

— Количество и разнообразие проектов действительно впечатляет… Теперь ясно, зачем учиться полтора года!

— Уверен, за лучшими нашими выпускниками работодатели и так в очередь выстроятся. Кадровый голод действительно существует. И зря некоторые думают, что сейчас все побегут в Data Science и рынок насытится. Хотеть стать экспертом — одно, а пройти этот путь — совсем другое. Как гласит притча, «много званых, но мало избранных». Крутых специалистов много не бывает, а бизнес в них очень нуждается. Мы со студентами будем работать, чтоб хотя бы часть этих потребностей закрыть.

— У меня по этой теме вопросов не осталось. Посмотрим, есть ли они у читателей. Сергей, огромное спасибо за рассказ!

В следующий раз мы с Сергеем поговорим об особенностях постоянной удаленной работы (не фриланс). Рассмотрим это с точек зрения сотрудника и работодателя. Уже скоро 🙂

Продолжаем говорить о факультетах GeekUniversity с руководителем образовательных проектов GeekBrains Сергеем Кручининым.

Что за специальность и где работать

— Где востребованы возможности искусственного интеллекта и в каких сферах смогут работать выпускники факультета?

— Направление Data Science появилось как ответ на распространение интернета и всеобщую информатизацию. У бизнеса и других структур копятся массивы данных, с которыми нужно что-то делать. Крупные банки, провайдеры интернета и телефонии, поисковые сервисы, социальные сети аккумулируют сведения о пользователях и хотят извлекать из этого выгоду.

Пользователи, в свою очередь, хотят быстро отсеивать нужную информацию и получать только интересные предложения. Товары и услуги нужны всем, но реклама раздражает, потому что зачастую навязывает что-то неактуальное.

И тут на сцену выходит искусственный интеллект: он может анализировать клиентскую базу любого размера и составлять персонализированные предложения. Он может строить прогнозы на основе прошлых действий пользователя. Например, банки могут автоматически рассчитать вероятность того, что человек вернет кредит. И хотя у них заложены некоторые риски, прогнозирование важно, чтобы не разориться в кризис.

Партнер нашего факультета ИИ — «МегаФон». Это компания, которая всерьез работает с большими данными, чтобы лучше обслуживать своих клиентов. Занятиям со специалистами «МегаФона» у нас будет посвящена целая учебная четверть.

Кроме того, когда мы говорим об искусственном интеллекте, подразумеваем сразу несколько родственных направлений: data science, машинное обучение, data engineering. Базовые понятия и инструменты у них одни и те же. Поэтому наш выпускник сможет себя попробовать там, где ему интереснее.

— А бизнес не боится доверять свои процессы ИИ? Ведь цена ошибки может быть высока.

— Поздно бояться — бизнес уже вовсю пользуется искусственным интеллектом и во многих ситуациях не может без него обойтись. Понятно, что система ошибается. Но и люди ошибаются: издалека можно пень за человека принять. И все же автоматизация позволяет избежать множества проблем, связанных с человеческим фактором: устал, отвлекся, не успел. Плюс анализ big data без ИИ невозможен в принципе.

Или даже возьмем задачу попроще. Вот надо вам расшифровать аудиозаписи — перевести их в текст. А записей таких десятки. Нанимать наборщиков — дорого и неэффективно. Система распознавания речи сильно упростит задачу. Да, она будет ошибаться, особенно в пунктуации и незнакомых ей словах, но все равно исправить записанное программой проще и быстрее, чем набрать все с нуля. Кто защищал диссертацию и вынужден был часами просиживать за расшифровкой стенограмм, меня поймет — процесс довольно мучительный.

— А помимо крупных компаний куда-то реально трудоустроиться?

— Сфера применения искусственного интеллекта не ограничивается обработкой больших данных. Одно из преимуществ ИИ в том, что он позволяет решать сложные задачи усилиями небольшого штата сотрудников.

Стартапам и среднему бизнесу специалисты по искусственному интеллекту нужны, чтобы разрабатывать умные сервисы: голосовые помощники, системы поиска по картинкам и музыке, программы перевода речи в текст, приложения с функцией распознавания лиц, службы проверки контента на плагиат и так далее.

Все мы знаем софт, который накладывает маски и эффекты на изображение с веб-камеры: пририсовывает рожки к голове, бороду к подбородку или маску слона на все лицо. Такого плана вещи можно писать в одиночку.

Медицинские решения на основе ИИ способны выявлять тревожные симптомы и предупреждать о необходимости обратиться к специалисту. Можно сфотографировать на смартфон родинку и проверить ее на признаки злокачественного новообразования. Если это мотивирует кого-то вовремя пройти обследование — уже хорошо.

Суть в том, что вариантов применения технологий, которым мы учим, практически неограниченное количество. И в обозримом будущем круг задач, которые можно решать с помощью ИИ и машинного обучения, будет только расти. Поэтому наш выпускник, если у него появятся новаторские идеи, сможет запускать и собственные проекты.

Цели и ценности

— Кто преподает на факультете и по какому принципу вы этих людей искали?

— Мы отбирали преподавателей, которые добились успеха как специалисты в сфере data science и при этом умеют преподнести материал в практическом ключе. Они понимают нашу аудиторию: студенты хотят освоить профессию и скорее начать работать. У большинства людей, которые приходят учиться в GU, нет вузовского образования и опыта — знания нужно закладывать с нуля. Поэтому нас не устраивает подход «оттарабанил лекцию и пошел дальше». Мы на реальных примерах показываем, как получить результат, и объясняем, почему именно так. Мы выбираем задачи, с которыми человек столкнется на собеседованиях и на работе, помогаем вписаться в существующий рынок.

Автор курсов и декан факультета — Сергей Ширкин — специалист-практик, который накопил обширные знания сразу по нескольким направлениям. Он работал с базами данных (это data engineering), применял ИИ в банковской сфере, в области распознавания изображений. Когда Сергей познакомился с нашей концепцией, он ее одобрил и помог нам наладить учебный процесс.

О кривой обучения и не страшной математике

— «Искусственный интеллект», «нейронные сети» — это звучит сложно и таинственно. Насколько высок порог вхождения в профессию?

— Речь не идет о чем-то тяжелом и доступном лишь избранным. Можно провести аналогию с профессией веб-разработчика: спрос на специалистов велик, а порог вхождения не слишком высок. Отсюда растущая популярность data science, но отсюда же и нехватка настоящих профи при обилии начинающих.

Как и на других факультетах, мы ведем студента от элементарных задач к серьезным проектам, которые можно показать работодателю. Продвинутых программистских навыков не требуется, но важно изучить Python, алгоритмы и структуры. То же самое касается математики: если раньше вы учили ее только в школе и что-то уже забыли, это нормально. Все необходимое из школьного курса мы в любом случае повторим на занятиях.

Главное — не рассчитывать, что «оплатил абонемент на фитнес — мышцы сами растут». Сразу говорю, этого не будет. Вы получаете знания и инструменты, а дальше трудитесь над учебными проектами, ищете решения, задаете вопросы, читаете книги. Мы вас направляем, помогаем не заблудиться в трудностях, объясняем, чего будет ждать от вас работодатель.

Кстати, нашим студентам не стоит бояться конкуренции с выпускниками вузов. Потому что с вузовской теоретической базой специалистом по data science не станешь — придется долго набирать практику. А вот после учебы у нас можно сразу начать карьеру в крупной компании или присоединиться к перспективному стартапу.

— От математики никуда не деться?

— На самом деле, научить обработке данных можно и без математики: по принципу «нажми на кнопку — получишь результат». Но мы ведь не обезьянок в цирк готовим. Специалист должен знать, как работают инструменты, которыми он пользуется. Иначе любая незнакомая проблема поставит его в тупик. Когда человек понимает математическую составляющую задачи, он сам определяет, какой инструмент лучше подойдет.

У нас математика исключительно прикладная: мы все закрепляем на примерах и не оставляем места путанице. Человеческий мозг так устроен, что нужное для дела — запоминает, остальное — забывает.

Я сам изучал механику и математику в вузе. У меня не складывались ассоциативные связи между тем, что нам дают, и тем, где это можно применить. Например, я не понимал, что такое нормальное распределение: формулы знал, но понятие оставалось для меня абстракцией. И только позже, на работе, мне одна девушка-HR объяснила, что это значит. Доценты и профессора не смогли этого доступно растолковать, а ей удалось.

Когда вы видите, как теория работает в конкретной ситуации и куда ее можно приложить, все меняется — у вас складывается общая картина. Практических задач в сфере анализа данных и искусственного интеллекта сейчас много как никогда. Поэтому я уверен, что мы сможем заинтересовать студентов, увлечь их профессией.

— Если все не так сложно, почему на факультете ИИ учатся полтора года, а не четыре месяца, например?

— Потому что мы не обзор профессии даем, как бывает на других курсах, а учим с нуля людей, мало знакомых с математикой. Более того, мы считаем, что студентам с хорошим теоретическим заделом все равно надо математику перепроходить в контексте практических задач. Мы предлагаем не тратить личное время на предварительную подготовку, а сразу учиться профессии. Лучше сэкономленное время потом посвятить повышению квалификации и углубиться в те области, которые вам интересны.

— Что именно из математики вы даете на факультете?

— Для начала мы повторим, что такое график и производная. Дальше зададим основы матанализа, линейной алгебры и комбинаторики. С интегралами познакомимся в общих чертах — без глубокого погружения. Будем брать самые простые вещи, которые в сфере ИИ работают и помогают решать актуальные для рынка задачи. При наличии мотивации студент с помощью преподавателя разберется в этих темах, даже если раньше с ними не сталкивался.

Практика

— С какими инструментами студенты научатся работать?

— Большинство связанных с ИИ вакансий требуют знания Python. Поэтому мы изучаем этот язык и его библиотеки, позволяющие работать с векторами, матрицами, нейронными сетями. Это перекрывает 99 % задач, которые могут возникнуть. Специализированных инструментов много: Pandas, NumPy, Tensor Flow, Keras, Theano, Matplotlib, Seaborn, Scikit-Learn. Чтобы использовать все это осознанно и самостоятельно, мы математику и учим.

Мы также будем изучать вспомогательные вещи. Например, Linux и регулярные выражения нужны, чтобы уметь вычленить из текста нужные фрагменты. Основы HTML тоже объясним — не для верстки, конечно, а чтобы студент представлял себе структуру DOM и мог к ней обращаться. Все это пригодится для сбора данных в интернете.

В то же время мы старались не перегружать курс. Например, большинство библиотек, о которых мы сейчас говорили, ради быстродействия написаны на языке С. Но это не значит, что нам надо его учить. Для начала работы по специальности этого не требуется, и мы на этом не останавливаемся. Понятно, что нет предела совершенству, и если выпускник захочет создавать свои инструменты, он может C изучить. Я всегда таких людей приветствую. Но мы даем набор навыков для трудоустройства и дальнейшего саморазвития.

— Какие проекты студенты делают, чтобы набрать опыт и что-то записать в резюме?

— Проекты будут двух типов: наши и партнерские. Первый наш практический курс учит собирать и обрабатывать данные сети Интернет. Здесь студенты опробуют несколько подходов к задаче. Сначала мы будем «парсить» страницы: напишем на Python «паука», который пробежится по нужным адресам и скачает искомую информацию. Этот метод нужен, когда сайт не хочет отдавать данные сам.

Дальше научимся обращаться к сайтам по-хорошему — через программный интерфейс, он же API (Application Interface). То есть отправлять серверу запрос и получать информацию. Также разберемся, какие есть сервисы открытых данных и как ими пользоваться. Студенты выберут подход, с помощью которого соберут данные в интересующей их сфере. Кто-то решит в культурном наследии порядок навести, другой будет медицинскую статистику собирать, третий составит базу по туроператорам и пассажирским перевозкам. Кстати, на будущее можно и систему сбора релевантных вакансий написать.

Следующий проект будет связан с машинным обучением. Построим модель прогнозирования, чтобы компьютер не просто проверял гипотезы, а формировал их на основе имеющихся данных. Здесь мы тоже разберем два подхода: сначала напишем классификатор, затем создадим нейронную сеть, а по итогу студент сам решит, что использовать в отчетном проекте.

Еще будет проект, где понадобится решать задачи с использованием машинного зрения или с распознаванием естественного языка — на выбор.

Также студенты освоят платформу Kaggle и потренируются в спортивном анализе данных. Победы в таких состязаниях на рынке ценятся и приравниваются к профессиональным достижениям. Даже если вы ни дня не работали в data science, но у вас хорошие результаты на Kaggle, вами заинтересуются крупные работодатели.

Проект от «МегаФона» будет посвящен обработке больших данных, которые сам партнер и предоставит.

Мы ведем переговоры с Maps.me о проекте с распознаванием изображений. Студенты напишут приложение, которое будет брать спутниковые карты Open Street Map и оцифровывать: размечать контуры водоемов, зданий, дорог, — а затем все это грузить обратно в систему. Кто «народные карты» рисовал или помогал проекту Wikimapia, представляет, о чем речь. Мы покажем, как этот процесс автоматизировать. Это еще и полезная миссия, потому что с подобными офлайн-картами можно ориентироваться там, где нет интернета.

— Количество и разнообразие проектов действительно впечатляет… Теперь ясно, зачем учиться полтора года!

— Уверен, за лучшими нашими выпускниками работодатели и так в очередь выстроятся. Кадровый голод действительно существует. И зря некоторые думают, что сейчас все побегут в Data Science и рынок насытится. Хотеть стать экспертом — одно, а пройти этот путь — совсем другое. Как гласит притча, «много званых, но мало избранных». Крутых специалистов много не бывает, а бизнес в них очень нуждается. Мы со студентами будем работать, чтоб хотя бы часть этих потребностей закрыть.

— У меня по этой теме вопросов не осталось. Посмотрим, есть ли они у читателей. Сергей, огромное спасибо за рассказ!

В следующий раз мы с Сергеем поговорим об особенностях постоянной удаленной работы (не фриланс). Рассмотрим это с точек зрения сотрудника и работодателя. Уже скоро 🙂

Искусственный интеллект: как и где изучать — отвечают эксперты. Как создать искусственный интеллект? (Почти) исчерпывающее руководство

Как случилось, что искусственный интеллект успешно развивается, а «правильного» определения для него до сих пор нет? Почему не оправдались надежды, возлагавшиеся на нейрокомпьютеры, и в чем заключаются три главные задачи, стоящие перед создателем искусственного интеллекта?

На эти и другие вопросы вы найдете ответ в статье под катом, написанной на основе выступления Константина Анисимовича, директора департамента разработки технологий ABBYY, одного из ведущих экспертов страны в сфере искусственного интеллекта.
При его личном участии были созданы технологии распознавания документов, которые применяются в продуктах ABBYY FineReader и ABBYY FormReader. Константин рассказал об истории и основах разработки AI на одном из мастер-классов для студентов Технопарка Mail.Ru. Материал мастер-класса и стал базой для цикла статей.

Всего в цикле будет три поста:
Искусственный интеллект для программистов
Применение знаний: алгоритмы поиска в пространстве состояний
Получение знаний: инженерия знаний и машинное обучение

Взлеты и падения подходов в AI

Первыми достижениями в области символьных вычислений были созданный в 50-е годы язык Lisp и работа Дж. Робинсона в области логического вывода. В коннекционизме таковым стало создание персептрона – самообучающегося линейного классификатора, моделирующего работу нейрона. Дальнейшие яркие достижения находились в основном в русле символьной парадигмы. В частности, это работы Сеймура Пайперта и Роберта Антона Уинсона в области психологии восприятия и, конечно, фреймы Марвина Минского.

В 70-е годы появились первые прикладные системы, использующие элементы искусственного интеллекта – экспертные системы. Дальше произошел некий ренессанс коннекционизма с появлением многослойных нейронных сетей и алгоритма их обучения методом обратного распространения. В 80-е годы увлечение нейронными сетями было просто повальным. Сторонники этого подхода обещали создать нейрокомпьютеры, которые будут работать практически как человеческий мозг.

Но ничего особенного из этого не вышло, потому что настоящие нейроны устроены намного сложнее, чем формальные, на которых основаны многослойные нейросети. И количество нейронов в человеческом мозге тоже намного больше, чем можно было позволить себе в нейросети. Основное, для чего оказались пригодны многослойные нейросети – это решение задачи классификации.

Следующей популярной парадигмой в области искусственного интеллекта стало машинное обучение. Подход начал бурно развиваться с конца 80-х годов и не теряет популярности и поныне. Значительный толчок развитию машинного обучения дало появление интернета и большого количества разнообразных легкодоступных данных, которые можно использовать для обучения алгоритмов.

Главные задачи при проектировании искусственного интеллекта

Возникает очень важный вопрос: как может AI решить задачу, для которой нет алгоритма решения? Суть в том, чтобы делать это так же, как и человек — выдвигать и проверять правдоподобные гипотезы. Естественно, что для выдвижения и проверки гипотез нужны знания.

Знания — это описание предметной области, в которой работает интеллектуальная система. Если перед нами система распознавания символов естественного языка, то знания включают в себя описания устройства символов, структуру текста и тех или иных свойств языка. Если это система оценки кредитоспособности клиента, у нее должны быть знания о типах клиентов и знания о том, как профиль клиента связан с его потенциальной некредитоспособностью. Знания бывают двух типов – о предметной области и о поиске путей решения (метазнания).

Основные задачи проектирования интеллектуальной системы сводятся к выбору способов представления знаний, способов получения знаний и способов применения знаний.

Представление знаний

Неструктурированные представления используются обычно в тех сферах, которые связаны с решением задач классификации. Это обычно векторы оценок весовых коэффициентов, вероятностей и тому подобное.

Практически все способы структурированного представления знания базируются на формализме фреймов, которые в 1970-е ввел Марвин Минский из MIT, чтобы обозначить структуру знаний для восприятия пространственных сцен. Как выяснилось, подобный подход годится практически для любой задачи.

Фрейм состоит из имени и отдельных единиц, называемых слотами. Значением слота может быть, в свою очередь, ссылка на другой фрейм… Фрейм может быть потомком другого фрейма, наследуя у него значения слотов. При этом потомок может переопределять значения слотов предка и добавлять новые. Наследование используется для того, чтобы сделать описание более компактным и избежать дублирования.

Несложно заметить, что существует сходство между фреймами и объектно-ориентированным программированием, где фрейму соответствует объект, а слоту — поле. Сходство это неслучайное, потому что фреймы были одним из источников возникновения ООП. В частности, один из первых объектно-ориентированных языков Small Talk практически в точности реализовывал фреймовые представления объектов и классов.

Для процедурного представления знаний используются продукции или продукционные правила. Продукционная модель — это модель, основанная на правилах, позволяющих представить знание в виде предложений «условие — действие». Такой подход раньше был популярен в различных системах диагностики. Достаточно естественно в виде условия описывать симптомы, проблемы или неисправности, а в виде действия — возможную неисправность, которая приводит к наличию этих симптомов.

В следующей статье мы поговорим о способах применения знаний.

Список литературы.

  1. John Alan Robinson. A Machine-Oriented Logic Based on the Resolution Principle. Communications of the ACM, 5:23-41, 1965.
  2. Seymour Papert, Marvin Minsky. Perceptrons. MIT Press, 1969
  3. Russell, Norvig. Artificial Intelligence: A Modern Approach.
  4. Simon Haykin. Neural networks: a comprehensive foundation.
  5. Nils J. Nilsson. Artificial Intelligence: A New Synthesis.

Основной вопрос перед разработчиком – какому языку отдать предпочтение для создания ИИ? Мы рассмотрим популярные языки, используемые для создания ИИ.

Одно только лишь название «искусственный интеллект» может привести в ступор и навести немало страха как на обычного человека, так и заурядного программиста. Занятие действительно сложное, а красивые демонстрируемые примеры — это результат многотысячных строк кода. При всём этом создание ИИ может стать вполне реальной задачей, а в части случаев, даже несложной. Многие проекты требуют углублённых знаний ИИ, а также языков программирования.

Родоначальником языков программирования, на которых начал создаваться искусственный интеллект стал LISP . ЛИСП отличается гибкостью использования и простотой расширения функционала. Благодаря наличию возможности быстрого прототипирования и установки макросов удалось сократить уйму времени, это принесло много пользы в отношении ИИ.

LISP стал универсальным языком, который равно хорошо справляется с относительно тяжёлыми и лёгкими задачами. В нём устроена качественная и продвинутая система объектно-ориентированности , что и позволило занять одну из лидирующих позиций при разработке ИИ.

Наибольшим достоинством языка является многофункциональность, среди прочих:

  • прозрачность использования и написания кода;
  • способность легко переносить программы;
  • лёгкое сопровождение проектов.

Для новичков важным достоинством Java станет наличие многочисленных бесплатных уроков в сети. Обучение Java является максимально комфортным и удобным для большинства студентов и новичков.

Среди особенностей языка стоит выделить:

  • простота выполнения отладки;
  • качественное взаимодействие клиентской и серверной системы ресурса;
  • лёгкость обращения с масштабными проектами.

При создании проектов на Java пользователь сталкивается с более привлекательным и доступным интерфейсом, что всегда притягивает аудиторию.

Prolog

Данный вариант относится к интерактивным языкам, которые работают по символической системе. Он популярен для использования в отношении проектов, требующих высокие логические способности. Язык имеет мощную и удобную основу, она активно используется в отношении программирования non-численного типа . На основании Prolog`а часто создаются доказательства теорем, проводится взаимодействие с понятным человеческим языком, используется для создания систем экспертной оценки.

Пролог относится к декларативным типам языка, которые используют формальное или образное «мышление ». Среди разработчиков ИИ приобрёл хорошую славу благодаря оптимальным обструкционным типам работы, встроенным алгоритмам анализа, недетерминизма и т.д. Всё в сумме можно описать так: Prolog — многофункциональная платформа для программирования ИИ.

Python

Активно применяется в программировании благодаря чистому синтаксису и логическому, строгому грамматическому построению программы. Немаловажную роль играет и удобный дизайн.

В основе используются многочисленные структурные алгоритмы, бесчисленные фреймворки для отладки, оптимальным показателям взаимодействия низкого и высокого уровня написания кода. Все перечисленные достоинства обеспечивают должное влияние в сфере создания искусственного интеллекта.

История развития ИИ

Началом традиционного представления ИИ стал проект UNIMATE , который увидел мир в 1961 году . В ходе представления был впервые получен робот, который начал выпускаться в промышленных масштабах. Робот был задействован на линии производства в концерне «General Motors ». Для создания были задействованы Валь и переменные из среды ассемблера. Язык пришёлся по душе благодаря наличию простейших фраз, отражению команд на мониторе и наличию инструкций, не нуждающихся в дополнительных разъяснениях.

Спустя 4 года (1965 год ) был запущен искусственный интеллект « Dendral ». Задача системы заключалась в выявлении молекулярной и атомной структуре соединений органического происхождения. Для написания был использован LISP .

«Weizenbaum » в 1966 году запустил проект Элиза, который впервые предполагал проведение беседы с роботом. Самой известной моделью являлся «Доктор», который позволял отвечать на поставленные запросы в форме психотерапевта. Для реализации проекта потребовалось сопоставление нескольких образцов технического достижения своего времени. Впервые Элиза увидел мир на SPLIP, но для отработки списка запущен «Weizenbaum». Немногим позже проект переработан на другую платформу — LISP .

Первым роботом мобильного типа стал «Шеки », в его основе также лежал ЛИСП. Логика конструктора была построена на решении поставленных задач и передвижения, для взаимодействия использовались подъёмы вверх и вниз, а также включение и выключение света. С помощью «Шеки » удавалось открывать, закрывать, передвигать и т.д. Робот даже был способен передвигаться со скоростью равной спокойной ходьбе человека — 5 км/ч.

За последние 15 лет было представлено многочисленное количество изобретений: «Деннинг » (сторожевой робот), «Predator » (беспилотник), «АЙБО » (собака), «АСИМО » от Honda и многие другие. Тенденция идёт к развитию данного направления, чего и стоит ожидать в ближайшем и дальнем бедующем.

Процесс создания искусственного интеллекта , с первого взгляда кажется довольно таки сложным занятием. Наблюдая за этими красивыми примерами ИИ , можно понять, что создавать интересные программы с ИИ можно. В зависимости от цели, нужны разные уровни знаний. Некоторые проекты требуют глубоких знаний ИИ, другие проекты требуют лишь знания языка программирования, но главный вопрос, которые стоит перед программистом. Какой язык выбрать для программирования искусственного интеллекта? Вот список языков для ИИ, которые могут быть полезными.

Первый компьютерный язык, применяемый для создания искусственного интеллекта — ЛИСП. Этот язык является довольно таки гибким и расширяемым. Такие особенности, как быстрое прототипирование и макросы очень полезны в создании ИИ. LISP — это язык, который превращает сложные задачи в простые. Мощная система объектно-ориентированности делает LISP одним из самых популярных языков программирования для искусственного интеллекта.

Основные преимущества этого многофункционального языка являются: прозрачность, переносимость и удобство сопровождения. Еще одним преимуществом языка Java является универсальность. Если вы новичок, то вас обрадует тот факт, что существуют сотни видеоуроков в Интернете, что сделает ваше обучение легче и эффективнее.

Основными особенностями java являются: легкая отладка, хорошее взаимодействие с пользователем, простота работы с большими проектами. Проекты, созданные с помощью языка Java имеют привлекательный и простой интерфейс.

Prolog

Это интерактивный символический язык программирования популярен для проектов, которые требуют логики. Имея мощную и гибкую основу, она широко применяется для non-численного программирования, доказательства теорем, обработки естественного языка, создания экспертных систем и искусственного интеллекта в целом.

Пролог — это декларативный язык с формальной логикой. Разработчики искусственного интеллекта ценят его за высокий уровень абстракции, встроенный механизм поиска, недетерминизм и т.д.

Python

Python — широко используется программистами из-за его чистой грамматики и синтаксиса, приятного дизайна. Различные структуры данных, куча Фреймворков тестирования, соотношение высокого уровня и низкого уровня программирования, которые делают Питон одним из самых популярных языков программирования для искусственного интеллекта.

История развития ИИ

Для того, чтобы увидеть связь между ИИ и языком программирования, давайте рассмотрим наиболее важные события в истории ИИ. Все началось в 1939 году, когда робот Электро был представлен на Всемирной выставки. Следующий робот был построен в 1951 году, Эдмундом Беркли.

Робот Робби был построен в 1956 году. К сожалению, нет информации о том, как он был разработан. В 1958 году, был изобретен язык программирования ЛИСП. Хотя этот язык был разработан 60 лет назад, он до сих пор остается основным языком для многих программ искусственного интеллекта.

В 1961 году, был построен UNIMATE. Это первый промышленный робот, который выпускается серийно. Этот робот был использован в «Дженерал Моторс» для работы на производственной линии. Для изготовления UNIMATE ученые использовали Валь, переменная ассемблера. Этот язык состоит из простых фраз, команд монитора, и инструкций, которые не требуют пояснений.

Система искусственного интеллекта Dendral, была построена в 1965 году. Она помогала легко определять молекулярную структуру органических соединений. Эта система была написана на Лиспе.

В 1966 году, Weizenbaum создал Элизу, первого виртуального собеседника. Одна из самых знаменитых моделей назывался Доктор, он отвечал на вопросы в стиле психотерапевта. Этот бот был реализован при сопоставлении образцов техники. Первая версия Элизы была написана на SLIP, список обработки языка был разработан Weizenbaum. Позже одна из его версий была переписана на Лиспе.

Первый мобильный робот, запрограммированный на Лиспе был Шеки. С помощью решения задач программы прокладок и датчиков, шейки двигался, включал и выключал свет, поднимался вверх и вниз, открывал двери, закрывал двери, толкал предметы, и двигал вещи. Перемещался Шеки со скоростью 5 км в час.

В ближайшие 15 лет мир увидел множество удивительных изобретений: Сторожевого робота Деннинг, ЛМИ Лямбда, Omnibot 2000, MQ-1 Predator беспилотный, Ферби, АЙБО робот собака, и Хонда АСИМО.

В 2003 году iRobot изобрел робот-пылесос Roomba. Разработанный на Лиспе, это автономный пылесос моет полы, используя определенные алгоритмы. Он обнаруживает препятствия и обходит их.

А какой язык программирования используете вы, для разработки программ с ИИ? Напишите о ваших работах в комментариях или в нашей группе вконтакте.

Где он рассказал об одной из своих целей, которая привела в профессию – желанию познать принцип работы и научиться создавать самому игровых ботов.

А ведь действительно, именно желание создать совершенный искусственный интеллект, будь то игровая модель или мобильная программа, сподвигла на путь программиста многих из нас. Проблема в том, что за тоннами учебного материала и суровой действительностью заказчиков, это самое желание было заменено простым стремлением к саморазвитию. Для тех, кто так и не приступил к исполнению детской мечты, далее краткий путеводитель по созданию настоящего искусственного разума.

Стадия 1. Разочарование

Когда мы говорим о создании хотя бы простых ботов, глаза наполняются блеском, а в голове мелькают сотни идей, что он должен уметь делать. Однако, когда дело доходит до реализации, оказывается, что ключом к разгадке реальной модели поведения является. математика. Если быть немного конкретнее, то вот список её разделов, которые необходимо проштудировать хотя бы в формате университетского образования:

Теория вероятностей и математическая статистика.

Это тот научный плацдарм, на котором будут строится ваше дальнейшее программирование. Без знания и понимания этой теории все задумки быстро разобьются о взаимодействие с человеком, ведь искусственный разум на самом деле не больше, чем набор формул.

Стадия 2. Принятие

Когда спесь немного сбита студенческой литературой, можно приступать к изучению языков. Бросаться на LISP или другие пока не стоит, для начала надо научиться работать с переменными и однозначными состояниями. Как для быстрого изучения, так и дальнейшего развития прекрасно подойдёт , но в целом можно взять за основу любой язык, имеющий соответствующие библиотеки.

Стадия 3. Развитие

Теперь переходим непосредственно к теории ИИ. Их условно можно разделить на 3 категории:

Слабый ИИ – боты, которых мы видим в компьютерных играх, или простые подручные помощники, вроде Siri. Они или выполняют узкоспециализированные задачи или являются незначительным комплексом таковых, а любая непредсказуемость взаимодействия ставит их в тупик.

Сильный ИИ – это машины, интеллект которых сопоставим с человеческим мозгом. На сегодняшний день нет реальных представителей этого класса, но компьютеры, вроде Watson очень близки к достижению этой цели.

Совершенные ИИ – будущее, машинный мозг, который превзойдёт наши возможности. Именно об опасности таких разработок предупреждают Стивен Хоккинг, Элон Маск и кинофраншиза «Терминатор».

Естественно, начинать следует с самых простых ботов. Для этого вспомните старую-добрую игру «Крестики-нолики» при использовании поля 3х3 и постарайтесь выяснить для себя основные алгоритмы действий: вероятность победы при безошибочных действиях, наиболее удачные места на поле для расположения фигуры, необходимость сводить игру к ничьей и так далее.

Как вы поняли даже из названий, это API, которые позволят без лишних затрат времени создать некоторое подобие серьёзного ИИ.

Стадия 5. Работа

Теперь же, когда вы уже вполне ясно представляете, как ИИ создавать и чем при этом пользоваться, пора выводить свои знания на новый уровень. Во-первых, для этого потребуется изучение дисциплины, которое носит название «Машинное обучение» . Во-вторых, необходимо научиться работать с соответствующими библиотеками выбранного языка программирования. Для рассматриваемого нами Python это Scikit-learn, NLTK, SciPy, PyBrain и Nump. В-третьих, в развитии никуда не обойтись от

Понимающие язык машины были бы очень полезны. Но мы не знаем, как их построить.

Об иллюстрациях к статье: одной из трудностей понимания языка компьютерами является то обстоятельство, что часто значение слов зависит от контекста и даже от внешнего вида букв и слов. В приведённых в статье изображениях несколько художников демонстрируют использование различных визуальных намёков, передающих смысловую нагрузку, выходящую за пределы непосредственно самих букв.

В разгар напряжённой игры в го, шедшей в Сеуле в Южной Корее между Ли Седолем, одним из лучших игроков всех времен, и программой AlphaGo, ИИ, созданным в Google, программа сделала загадочный ход, продемонстрировавший её вызывающее оторопь превосходство над человеческим соперником.

На 37-м ходу AlphaGo решила положить чёрный камень в странную на первый взгляд позицию. Всё шло к тому, что она должна была потерять существенный кусок территории – ошибка начинающего в игре, построенной на контроле за пространством на доске. Два телекомментатора рассуждали о том, правильно ли они поняли ход компьютера и не сломался ли он. Оказалось, что, несмотря на противоречие здравому смыслу, 37-й ход позволил AlphaGo построить труднопреодолимую структуру в центре доски. Программа от Google по сути выиграла игру при помощи хода, до которого не додумался бы ни один из людей.

Впечатляет ещё и потому, что древнюю игру го часто рассматривали как проверку на интуитивный интеллект. Правила её просты. Два игрока по очереди кладут чёрные или белые камни на пересечения горизонтальных и вертикальных линий доски, пытаясь окружить камни противника и удалить их с доски. Но хорошо играть в неё невероятно сложно.

Если шахматисты способны просчитывать игру на несколько шагов вперёд, в го это быстро становится невообразимо сложной задачей, кроме того, в игре не существует классических гамбитов. Также нет простого способа измерения преимущества, и даже для опытного игрока может быть сложно объяснить, почему он сделал именно такой ход. Из-за этого невозможно написать простой набор правил, которому бы следовала программа, играющая на уровне эксперта.

AlphaGo не учили играть в го. Программа анализировала сотни тысяч игр и играла миллионы матчей сама с собой. Среди различных ИИ-техник, она использовала набирающий популярность метод, известный, как глубокое обучение. В его основе — математические вычисления, метод которых вдохновлен тем, как связанные между собой слои нейронов в мозгу активируются при обработке новой информации. Программа учила сама себя за многие часы практики, постепенно оттачивая интуитивное чувство стратегии. И то, что она затем смогла выиграть у одного из лучших игроков го в мире, является новой вехой в машинном интеллекте и ИИ.

Через несколько часов после 37-го хода AlphaGo выиграла игру и стала лидировать со счётом 2:0 в матче из пяти игр. После этого Седоль стоял перед толпой журналистов и фотографов и вежливо извинялся за то, что подвёл человечество. «Я потерял дар речи»,- говорил он, моргая под очередями фотовспышек.

Удивительный успех AlphaGo показывает, какой прогресс был достигнут в ИИ за последние несколько лет, после десятилетий отчаяния и проблем, описываемых, как «зима ИИ». Глубокое обучение позволяет машинам самостоятельно обучаться тому, как выполнять сложные задачи, решение которых ещё несколько лет назад нельзя было представить без участия человеческого интеллекта. Робомобили уже маячат на горизонте. В ближайшем будущем системы, основанные на глубоком обучении, будут помогать с диагностикой заболеваний и выдачей рекомендаций по лечению.

Но несмотря на эти впечатляющие подвижки одна из основных возможностей никак не даётся ИИ: язык. Системы вроде Siri и IBM Watson могут распознавать простые устные и письменные команды и отвечать на простые вопросы, но они не в состоянии поддерживать разговор или на самом деле понимать используемые слова. Чтобы ИИ изменил наш мир, это должно поменяться.

Хотя AlphaGo не разговаривает, в нём есть технология, способная дать лучшее понимание языка. В компаниях Google, Facebook, Amazon и в научных лабораториях исследователи пытаются решить эту упрямую проблему, используя те же инструменты ИИ – включая глубокое обучение – что отвечают за успех AlphaGo и возрождение ИИ. Их успех определит масштабы и свойства того, что уже начинает превращаться в революцию ИИ. Это определит наше будущее – появятся ли у нас машины, с которыми будет легко общаться, или системы с ИИ останутся загадочными чёрными ящиками, пусть и более автономными. «Никак не получится сотворить человекоподобную систему с ИИ, если в её основе не будет заложен язык,- говорит Джош Тененбаум , профессор когнитивных наук и вычислений из MIT. – Это одна из самых очевидных вещей, определяющих человеческий интеллект».

Возможно, те же самые технологии, что позволили AlphaGo покорить го, позволят и компьютерам освоить язык, или же потребуется что-то ещё. Но без понимания языка влияние ИИ будет другим. Конечно, у нас всё равно будут нереально мощные и интеллектуальные программы вроде AlphaGo. Но наши отношения с ИИ будут не такими тесными, и, вероятно, не такими дружественными. «Самым главным вопросом с начала исследований было „Что, если бы вы получили устройства, интеллектуальные с точки зрения эффективности, но не похожие на нас с точки зрения отсутствия сочувствия тому, кто мы есть?“ – говорит Терри Виноград , заслуженный профессор Стэнфордского университета. „Можно представить машины, основанные не на человеческом интеллекте, работающие с большими данными и управляющие миром“.

Говорящие с машинами

Я начал с Винограда, живущего в пригороде на южном краю Стэнфордского кампуса в Пало-Альто, недалеко от штаб-квартир Google, Facebook и Apple. Его кудрявые седые волосы и густые усы придают ему вид почтенного учёного, и он заражает своим энтузиазмом.

В 1968 Виноград сделал одну из ранних попыток научить машины разговаривать. Будучи математическим вундеркиндом, увлечённым языком, он приехал в новую лабораторию MIT по изучению ИИ получать учёную степень. Он решил создать программу, общающуюся с людьми через текстовый ввод на повседневном языке. В то время это не казалось такой дерзкой целью. В разработке ИИ были сделаны очень большие шаги и другие команды в MIT строили сложные системы компьютерного зрения и роботизированных манипуляторов. „Было чувство неизвестных и неограниченных возможностей“,- вспоминает он.

Но не все считали, что язык так легко покорить. Некоторые критики, включая влиятельного лингвиста и профессора MIT Ноама Хомски, считали, что исследователям ИИ будет очень сложно научить машины пониманию, поскольку механика языка у людей была очень плохо изучена. Виноград вспоминает вечеринку, на которой студент Хомски отошёл от него после того, как услышал, что он работает в лаборатории ИИ.

Но есть причины и для оптимизма. Джозеф Вейзенбаум , профессор MIT немецкого происхождения, пару лет назад сделал первую программу-чатбота. Её звали ELIZA и она была запрограммирована отвечать так, как психолог из мультиков, повторяя ключевые части утверждений или задавая вопросы, вдохновляющие на продолжение разговора. Если вы сообщали ей, что злитесь на мать, программа могла бы ответить „А что ещё приходит вам в голову, когда вы думаете о своей матери?“. Дешёвый трюк, который работал на удивление хорошо. Вейзенбаум был шокирован, когда некоторые испытуемые стали поверять свои тёмные секреты его машине.

Виноград хотел сделать нечто, что могло бы убедительно делать вид, что понимает язык. Он начал с уменьшения области действия проблемы. Он создал простое виртуальное окружение, „блочный мир“, состоящий из набора вымышленных объектов на вымышленном столе. Затем он создал программу, назвав её SHRDLU, способную разобрать все существительные, глаголы и простые правила грамматики, необходимые для общения в этом упрощённом виртуальном мире. SHRDLU (бессмысленное слово, составленное из стоящих в ряд букв клавиатуры линотипа) могла описывать предметы, отвечать на вопросы об их взаимоотношениях и изменять блочный мир в ответ на вводимые команды. У неё даже была некая память и если вы просили её передвинуть „красный конус“, а затем писали про некий конус, она предполагала, что вы имеете в виду этот красный конус, а не какой-либо другой.

SHRDLU стал знаменем того, что в области ИИ наметился огромный прогресс. Но это была всего лишь иллюзия. Когда Виноград попытался расширить блочный мир программы, правила, необходимые для учёта дополнительных слов и сложности грамматики стали неуправляемыми. Всего лишь через несколько лет он сдался и оставил область ИИ, сконцентрировавшись на других исследованиях. „Ограничения оказались гораздо сильнее, чем тогда казалось“,- говорит он.

Виноград решил, что при помощи доступных в то время инструментов невозможно научить машину по-настоящему понимать язык. Проблема, по мнению Хьюберта Дрейфуса , профессора философии в Калифорнийском университете в Беркли, высказанному им в книге 1972 года „Чего компьютеры не могут“ , в том, что множество человеческих действий требуют инстинктивного понимания, которое невозможно задать набором простых правил. Именно поэтому до начала матча между Седолом и AlphaGo многие эксперты сомневались, что машины смогут овладеть игрой го.

Но в то время, как Дрейфус доказывал свою точку зрения, несколько исследователей разрабатывали подход, который, в конце концов, даст машинам интеллект нужного вида. Вдохновляясь нейрологией, они экспериментировали с искусственными нейросетями – слоями математических симуляций нейронов, которые можно обучить активироваться в ответ на определённые входные данные. В начале эти системы работали невозможно медленно и подход был отвергнут как непрактичный для логики и рассуждений. Однако ключевой возможностью нейросетей была способность обучиться тому, что не было запрограммировано вручную, и позже она оказалась полезной для простых задач типа распознавания рукописного текста. Это умение нашло коммерческое применение в 1990-х для считывания чисел с чеков. Сторонники метода были уверены, что со временем нейросети позволят машинам делать гораздо больше. Они утверждали, что когда-нибудь эта технология поможет и распознавать язык.

За последние несколько лет нейросети стали более сложными и мощными. Подход процветал благодаря ключевым математическим улучшениям, и, что более важно, более быстрому компьютерному железу и появлению огромного количества данных. К 2009 году исследователи из Университета Торонто показали, что многослойные сети глубокого обучения могут распознавать речь с рекордной точностью. А в 2012 году та же группа выиграла соревнование по машинному зрению, используя алгоритм глубокого обучения, показавший удивительную точность.

Нейросеть глубокого обучения распознаёт объекты на картинках при помощи простого трюка. Слой симулируемых нейронов получает ввод в виде картинки и некоторые из нейронов активизируются в ответ на интенсивность отдельных пикселей. Результирующий сигнал проходит через множество слоёв связанных между собой нейронов перед тем, как достичь выходного слоя, сигнализирующего о наблюдении объекта. Математический приём под названием „обратное распространение“ используется для подгонки чувствительности нейронов сети для создания правильного ответа. Именно этот шаг и даёт системе возможность обучаться. Различные слои в сети откликаются на такие свойства, как края, цвета или текстура. Такие системы сегодня способны распознавать объекты, животных или лица с точностью, соперничающей с человеческой.

С применением технологии глубокого обучения к языку есть очевидная проблема. Слова – это произвольные символы и этим они, по сути, отличаются от изображений. Два слова могут иметь схожее значение и содержать совершенно разные буквы. А одно и то же слово может означать разные вещи в зависимости от контекста.

В 1980-х исследователи выдали хитрую идею превращения языка в такой тип проблемы, с которым нейросеть может справиться. Они показали, что слова можно представлять в виде математических векторов, что позволяет подсчитывать сходство связанных слов. К примеру, „лодка“ и „вода“ близки в векторном пространстве, хотя и выглядят по-разному. Исследователи из Монреальского университета под руководством Йошуа Бенджио и ещё одна группа из Google использовали эту идею для построения сетей, в которых каждое слово в предложении используется для построения более сложного представления. Джоффри Хинтон , профессор из Университета Торонто и видный исследователь глубокого обучения, работающий также и в Google, называет это „мысленным вектором“.

Используя две таких сети, можно делать переводы с одного языка на другой с отличной точностью. А комбинируя эти типы сетей с той, что распознаёт объекты на картинках, можно получить удивительно точные субтитры.

Смысл жизни

Google уже обучает свои компьютеры основам языка. В мае компания обнародовала систему Parsey McParseface, способную распознавать синтаксис, существительные, глаголы и другие элементы текста. Несложно видеть, как понимание языка может помочь компании. Алгоритм поиска Google когда-то просто отслеживал ключевые слова и ссылки между веб-страницами. Теперь система RankBrain читает текст страниц, чтобы понять его смысл и улучшить результаты поиска. Ли хочет продвинуть эту идею ещё дальше. Адаптируя систему, оказавшуюся полезной для переводов и подписей картинок, они с коллегами создали Smart Reply, читающий содержимое писем на Gmail и предлагающую возможные ответы. Они также создали программу, обучившуюся на основе чата поддержки Google отвечать на простые технические вопросы.

Недавно Ли создал программу, способную генерировать сносные ответы на непростые вопросы. Она тренировалась на диалогах из 18 900 фильмов. Некоторые ответы пугающе точно попадают в точку. К примеру, Ли спросил „В чём смысл жизни?“ и программа ответила „В служении высшему добру“. „Неплохой ответ,- вспоминает он с ухмылкой. – Возможно, лучше, чем я бы ответил сам“.

Есть только одна проблема, которая становится очевидной при взгляде на большее количество ответов системы. Когда Ли спросил „Сколько ног у кошки?“, система ответила „Думаю, четыре“. Затем он спросил „Сколько ног у сороконожки?“ и получил странный ответ „Восемь“. По сути, программа Ли не понимает, о чём говорит. Она понимает, что некоторые комбинации символов сочетаются вместе, но не понимает реальный мир. Она не знает, как выглядит сороконожка, или как она двигается. Это всё ещё иллюзия интеллекта, без здравого смысла, который люди принимают, как само собой разумеющееся. Системы глубокого обучения в этом смысле довольно шаткие. Система от Google, создающая подписи к изображениям, иногда делает странные ошибки, к примеру, описывает дорожный знак как холодильник с едой.

По странному совпадению, соседом Терри Винограда в Пало Альто оказался человек, который может помочь компьютерам лучше разобраться в реальном смысле слов. Фей-Фей Ли , директор Стэнфордской лаборатории искусственного интеллекта, была в декретном отпуске во время моего визита, но она пригласила меня домой и гордо представила мне своего трёхмесячного ребёнка, Финикс. „Обратите внимание, что на вас она смотрит больше, чем на меня,- сказала Ли, когда Финикс уставилась на меня. – Это потому что вы новый; это раннее распознавание лиц“.

Большую часть своей карьеры Ли исследовала вопросы машинного обучения и компьютерного зрения. Несколько лет назад под её руководством была проведена попытка создания базы данных из миллионов изображений объектов, каждое из которых было подписано соответствующими ключевыми словами. Но Ли считает, что машинам необходимо более сложное понимание происходящего в мире и в этом году её команда выпустила другую базу данных с изображениями, аннотации к которым были гораздо богаче. К каждой картинке люди сделали десятки подписей: „Собака на скейте“, „У собаки густой развевающийся мех“, „Дорога с трещинками“ и так далее. Они надеются, что системы машинного обучения научатся понимать физический мир. „Языковая часть мозга получает очень много информации, в том числе и от визуальной системы,- говорит Ли. – Важной частью ИИ будет интеграция этих систем“.

Этот процесс ближе к обучению детей, связывающих слова с объектами, взаимоотношениями и действиями. Но аналогия с обучением людей не заходит слишком далеко. Детишкам не нужно видеть собаку на скейте, чтобы представить её себе или описать словами. Ли верит, что сегодняшних инструментов для ИИ и машинного обучения не будет достаточно для того, чтобы создать настоящий ИИ. „Это не просто будет глубокое обучение с большим набором данных,- говорит она. – Мы, люди, очень плохо справляемся с подсчётами больших данных, но очень хорошо – с абстракциями и творчеством“.

Никто не знает, как наделить машины этими человеческими качествами и возможно ли это вообще. Есть ли что-то исключительно человеческое в таких качествах, что не позволяет ИИ обладать ими?

Специалисты по когнитивным наукам, например, Тененбаум из MIT, считают, что сегодняшним нейросетям не хватает критичных компонентов разума – вне зависимости от размера этих сетей. Люди способны относительно быстро обучаться на сравнительно малых объёмах данных, и у них есть встроенная возможность эффективного моделирования трёхмерного мира. „Язык построен на других возможностях, вероятно, лежащих более глубоко и присутствующих в младенцах ещё до того, как они начинают владеть языком: визуальное восприятие мира, работа с нашим двигательным аппаратом, понимание физики мира и намерений других существ“,- говорит Тененбаум.

Если он прав, то без попыток симуляции человеческого процесса обучения, создания ментальных моделей и психологии будет очень сложно воссоздать понимание языка у ИИ.

Объяснитесь

Гудман со своими студентами разработали язык программирования Webppl, который можно использовать для наделения компьютеров вероятностным здравым смыслом, что при разговорах оказывается довольно важным. Одна экспериментальная версия умеет распознавать игру слов, а другая – гиперболы. Если ей сказать, что некоторым людям приходится проводить „вечность“ в ожидании столика в ресторане, она автоматически решит, что использование буквального значения этого слова в данном случае маловероятно и что люди, скорее всего, ждут довольно долго и раздражаются. Систему пока нельзя назвать истинным интеллектом, но она показывает, как новые подходы могут помочь ИИ-программам разговаривать чуть более жизненно.

Также пример Гудмана показывает, как сложно будет научить машины языку. Понимание смысла понятия „вечность“ в определённом контексте – пример того, чему должны будут научиться ИИ-системы, при этом это на самом деле довольно простая и рудиментарная вещь.

Тем не менее, несмотря на сложность и запутанность задачи, первоначальные успехи исследователей, использующих глубокое обучение для распознавания образов или игры в го, дают надежду, что мы находимся на пороге прорыва и в языковой области. В этом случае этот прорыв подоспел как раз вовремя. Если ИИ должен стать универсальным инструментом, помочь людям дополнить и усилить их собственный интеллект и выполнять задачи в режиме беспроблемного симбиоза, то язык является ключом к достижению этого состояния. Особенно если ИИ-системы будут всё больше использовать глубокое обучение и другие технологии для самопрограммирования.

»В целом, системы глубокого обучения вызывают благоговейный трепет,- говорит Джон Леонард , профессор, изучающий робомобили в MIT. – С другой стороны, их работу довольно сложно понять».

Компания Toyota, изучающая различные технологии автономного вождения, запустила в MIT исследовательский проект под руководством Джеральда Сассмана , эксперта по ИИ и языкам программирования, с целью разработки системы автономного вождения, способной объяснить, почему она в какой-то момент совершила то или иное действие. Очевидным способом дать такое объяснение был бы вербальный. «Создавать системы, сознающие свои знания – это очень сложная задача,- говорит Леонард, руководящий другим проектом Toyota в MIT. – Но, да, в идеале они должны дать не просто ответ, а объяснение».

Через несколько недель после возвращения из Калифорнии я встретился с Дэвидом Сильвером , исследователем из отдела Google DeepMind и разработчиком AlphaGo. Он выступал с рассказом о матче против Седоля на научной конференции в Нью-Йорке. Сильвер объяснил, что когда программа во второй игре сделала свой решающий ход, его команда была удивлена не меньше остальных. Они лишь могли видеть, что AlphaGo предсказала шансы на выигрыш, и это предсказание мало менялось после 37-го хода. Только несколько дней спустя, тщательно проанализировав игру, команда сделала открытие: переварив предыдущие игры, программа подсчитала, что игрок-человек может сделать такой ход с вероятностью в 1 к 10 000. А её тренировочные игры показывали, что такой манёвр обеспечивает необычайно сильное позиционное преимущество.

Так что, в каком-то смысле, машина знала, что этот ход ударит по слабому месту Седоля.

Сильвер сказал, что в Google рассматривают несколько возможностей коммерциализации этой технологии, включая интеллектуальных ассистентов и инструменты для медицинского обслуживания. После лекции я спросил его о важности иметь возможность общаться с ИИ, управляющим подобными системами. «Интересный вопрос,- сказал он после паузы. – Для некоторых областей применения это может быть полезным. Например, в здравоохранении может быть важно знать, почему было принято конкретное решение».

В самом деле, ИИ становятся всё более сложными и запутанными и очень сложно представить, как мы будем работать с ними без языка – без возможности спросить их, «Почему?». Более того, возможность с лёгкостью общаться с компьютерами сделало бы их более полезными и выглядело бы это волшебством. В конце концов, язык – это самый лучший из наших способов понимать мир и взаимодействовать с ним. Настало время машинам догонять нас.

Искусственный интеллект: как и где изучать — отвечают эксперты. Программирование роботов. Разработка робототехники

Основной вопрос перед разработчиком – какому языку отдать предпочтение для создания ИИ? Мы рассмотрим популярные языки, используемые для создания ИИ.

Одно только лишь название «искусственный интеллект» может привести в ступор и навести немало страха как на обычного человека, так и заурядного программиста. Занятие действительно сложное, а красивые демонстрируемые примеры — это результат многотысячных строк кода. При всём этом создание ИИ может стать вполне реальной задачей, а в части случаев, даже несложной. Многие проекты требуют углублённых знаний ИИ, а также языков программирования.

Родоначальником языков программирования, на которых начал создаваться искусственный интеллект стал LISP . ЛИСП отличается гибкостью использования и простотой расширения функционала. Благодаря наличию возможности быстрого прототипирования и установки макросов удалось сократить уйму времени, это принесло много пользы в отношении ИИ.

LISP стал универсальным языком, который равно хорошо справляется с относительно тяжёлыми и лёгкими задачами. В нём устроена качественная и продвинутая система объектно-ориентированности , что и позволило занять одну из лидирующих позиций при разработке ИИ.

Наибольшим достоинством языка является многофункциональность, среди прочих:

  • прозрачность использования и написания кода;
  • способность легко переносить программы;
  • лёгкое сопровождение проектов.

Для новичков важным достоинством Java станет наличие многочисленных бесплатных уроков в сети. Обучение Java является максимально комфортным и удобным для большинства студентов и новичков.

Среди особенностей языка стоит выделить:

  • простота выполнения отладки;
  • качественное взаимодействие клиентской и серверной системы ресурса;
  • лёгкость обращения с масштабными проектами.

При создании проектов на Java пользователь сталкивается с более привлекательным и доступным интерфейсом, что всегда притягивает аудиторию.

Prolog

Данный вариант относится к интерактивным языкам, которые работают по символической системе. Он популярен для использования в отношении проектов, требующих высокие логические способности. Язык имеет мощную и удобную основу, она активно используется в отношении программирования non-численного типа . На основании Prolog`а часто создаются доказательства теорем, проводится взаимодействие с понятным человеческим языком, используется для создания систем экспертной оценки.

Пролог относится к декларативным типам языка, которые используют формальное или образное «мышление ». Среди разработчиков ИИ приобрёл хорошую славу благодаря оптимальным обструкционным типам работы, встроенным алгоритмам анализа, недетерминизма и т.д. Всё в сумме можно описать так: Prolog — многофункциональная платформа для программирования ИИ.

Python

Активно применяется в программировании благодаря чистому синтаксису и логическому, строгому грамматическому построению программы. Немаловажную роль играет и удобный дизайн.

В основе используются многочисленные структурные алгоритмы, бесчисленные фреймворки для отладки, оптимальным показателям взаимодействия низкого и высокого уровня написания кода. Все перечисленные достоинства обеспечивают должное влияние в сфере создания искусственного интеллекта.

История развития ИИ

Началом традиционного представления ИИ стал проект UNIMATE , который увидел мир в 1961 году . В ходе представления был впервые получен робот, который начал выпускаться в промышленных масштабах. Робот был задействован на линии производства в концерне «General Motors ». Для создания были задействованы Валь и переменные из среды ассемблера. Язык пришёлся по душе благодаря наличию простейших фраз, отражению команд на мониторе и наличию инструкций, не нуждающихся в дополнительных разъяснениях.

Спустя 4 года (1965 год ) был запущен искусственный интеллект « Dendral ». Задача системы заключалась в выявлении молекулярной и атомной структуре соединений органического происхождения. Для написания был использован LISP .

«Weizenbaum » в 1966 году запустил проект Элиза, который впервые предполагал проведение беседы с роботом. Самой известной моделью являлся «Доктор», который позволял отвечать на поставленные запросы в форме психотерапевта. Для реализации проекта потребовалось сопоставление нескольких образцов технического достижения своего времени. Впервые Элиза увидел мир на SPLIP, но для отработки списка запущен «Weizenbaum». Немногим позже проект переработан на другую платформу — LISP .

Первым роботом мобильного типа стал «Шеки », в его основе также лежал ЛИСП. Логика конструктора была построена на решении поставленных задач и передвижения, для взаимодействия использовались подъёмы вверх и вниз, а также включение и выключение света. С помощью «Шеки » удавалось открывать, закрывать, передвигать и т.д. Робот даже был способен передвигаться со скоростью равной спокойной ходьбе человека — 5 км/ч.

За последние 15 лет было представлено многочисленное количество изобретений: «Деннинг » (сторожевой робот), «Predator » (беспилотник), «АЙБО » (собака), «АСИМО » от Honda и многие другие. Тенденция идёт к развитию данного направления, чего и стоит ожидать в ближайшем и дальнем бедующем.

Области применения искусственного интеллекта

Искусственный интеллект — это область компьютерной науки ориентированой на компьютерное моделирование и понимание человеческого интеллекта.

Применение методов искусственного интеллекта:

Теория распознавания образов

Компания Simmakers предлагает следующие услуги по распознаванию образов:

  • Оптическое распознавание символов
  • Распознавание рукописного ввода
  • Распознавание лиц и автоматическое определение лица в кадре
  • Детектирование и распознавание движения
  • Поиск изображений
  • Распознавание объектов
  • Измерение параметров объекта
  • Повышение контурной резкости изображений

Интеллектуальный анализ данных (Data mining)

На сегодняшний день интеллектуальный анализ данных в основном широко используется финансовыми компаниями, а также организациями розничной торговли и маркетинга. Мы предоставляем услуги в области интеллектуального анализа данных, которые позволяют этим организациям определить взаимоотношения среди «внутренних» факторов, таких как цена, уровень квалификации персонала или позиционирование продукта, а также «внешние» факторы, такие как экономические показатели, конкуренция, и демография клиентов. Наши технологии позволяют компаниям оценить влияние на удовлетворение запросов потребителей, продажи и прибыль.

Мы предлагаем услуги по интеллектуальному анализу данных в следующих отраслях:

  • Разработка и создание хранилища данных используя преимущества интеллектуального анализа в сфере телекоммуникаций
  • Многомерный анализ телекоммуникационных данных
  • Обработка телекоммуникационных данных в маркетинговых целях
  • Обнаружение телекоммуникационного мошенничества
  • Локализация ошибок и прогнозирование неисправностей в коммуникационной сети
  • Средства визуализации для анализа телекоммуникационных данных

Сфера розничной торговли

  • Разработка и создание хранилища данных используя преимущества интеллектуального анализа в сфере розничной торговли
  • Анализ эффективности кампаний по организации и стимулированию сбыта
  • Многофакторный анализ клиентов, продуктов, продаж, региона, времени и т.д.
  • Товарные рекомендации и перекрестные ссылки на продукты
  • Средства визуализации для анализа данных в сфере розничной торговли
  • Разработка и создание хранилища данных используя преимущества интеллектуального анализа в финансовой сфере
  • Развитие торговой стратегии и исследование правил торговли с помощью генетических алгоритмов
  • Расчет рыночных и кредитных рисков
  • Средства визуализации для анализа финансовых данных

Почему клиенты выбирают Simmakers

Обратившись в компанию Simmakers, вы получите компетентное решение, разработанное специалистами с высокой квалификацией в области разработки систем искусственного интеллекта, интеллектуального анализа данных, программной инженерии и прикладной математики.

Задачи, выполненные ранее специалистами Simmakers:

Мы обладаем рядом преимуществ, которые позволяют нам успешно решать поставленные задачи:

  • Партнерство с NVIDIA. Являясь , мирового лидера в производстве видеокарт и графических процессоров, мы применяем последние достижения корпорации при разработке ИТ-решений в области компьютерной графики, визуализации данных и параллелизации вычислений.
  • Обширный опыт. Работая более 10 лет, специалисты нашей компании выполнили свыше 30 сложных проектов по визуализации данных и компьютерному моделированию физических и технологических процессов для различных отраслей, включая строительный инжиниринг, добычу нефти и газа, металлургию, киноиндустрию, медицину, искусство и др.
  • Экспертиза международного уровня. Сотрудники компании Simmakers – это профессионалы в области прикладной математики, информационных технологий и разработки программного обеспечения, многие из которых обладают высокими достижениями и международными наградами в предметных областях. Мы активно сотрудничаем с ведущими мировыми исследовательскими центрами, Массачусетский технологический университет , Калифорнийский университет в Лос-Анджелесе и Сколковский институт науки и технологий.
  • Индивидуальный подход. При разработке ИТ-решений мы максимально учитываем потребности и пожелания каждого заказчика. Такой подход позволяет нам наладить доверительные и взаимовыгодные отношения с клиентами, что в итоге благотворно сказывается на эффективности выполнения проектов.
    • Всё ещё остались вопросы?

Мы применяем различные методы:

Экспертные системы, гибридные интеллектуальные системы

  • Алгоритмы гибридизации
  • Гибридные экспертные системы
  • Гибридные нейроны и нейронные сети
  • Гибридные обучающие алгоритмы ANN
  • Перцептроны
  • Многослойные перцептроны
  • Радиально-базисные сети
  • Когнитрон, неокогнитрон
  • Нейронная сеть Хопфилда
  • Алгоритм обратного распространения ошибки
  • Алгоритм Левенберга — Марквардта
  • Алгоритм упругого распространения
  • Метод Бройдена-Флетчера-Гольдфарба-Шанно
  • Метод сопряженного градиента (CG)
  • Генетические алгоритмы
  • Эволюционное программирование
  • Эволюционная стратегия
  • Пропозициональная
  • Предикатная
  • Высшего порядка

Часто задаваемые вопросы

Q: Что подразумевает под собой термин «искусственный интеллект»?

A: Искусственный интеллект (ИИ) это наука и технология создания интеллектуальных машин, особенно интеллектуальных компьютерных программ а также научное направление, разрабатывающее методы, позволяющие электронно-вычислительной машине решать интеллектуальные задачи, если они решаются человеком. Этим понятием обозначают функциональные возможности машины решать человеческие задачи.

Q: Какие основные подходы и направления к построению систем ИИ?

A: Существуют различные подходы к построению систем ИИ.

Единого ответа на вопрос, чем занимается искусственный интеллект, не существует. Анализируя историю ИИ, можно сделать вывод, что за последние пять десятилетий исследования в области ИИ в основном сосредоточены на решении конкретных проблем. Поэтому, несмотря на наличие множества подходов как к пониманию задач ИИ, так и созданию интеллектуальных информационных систем, на сегодняшний день можно выделить два основных подхода к разработке ИИ: 1) нисходящий (англ. Top-Down AI), семиотический — создание экспертных систем, баз знаний и систем логического вывода, имитирующих высокоуровневые психические процессы: мышление, рассуждение, речь, эмоции, творчество и т. д.; 2) восходящий (англ. Bottom-Up AI), биологический — изучение нейронных сетей и эволюционных вычислений, моделирующих интеллектуальное поведение на основе биологических элементов, а также создание соответствующих вычислительных систем, таких как нейрокомпьютер или биокомпьютер.

Q: Какие области применения искусственного интеллекта существуют на сегодняшний день?

A: В настоящий момент в области искусственного интеллекта наблюдается вовлечение многих предметных областей, имеющих скорее практическое отношение к ИИ, а не фундаментальное. Многие подходы были опробованы, но к возникновению искусственного разума ни одна исследовательская группа пока так и не подошла. Ниже представлены лишь некоторые примеры.

Компьютерная система, способная частично заменить специалиста-эксперта в разрешении проблемной ситуации. Такие системы рассматриваются совместно с базами знаний как модели поведения экспертов в определенной области знаний с использованием процедур логического вывода и принятия решений, а базы знаний — как совокупность фактов и правил логического вывода в выбранной предметной области деятельности. MYCIN стала ранней экспертной системой, разработанной как докторская диссертация в 1974 году, для диагностирования бактерий, вызывающих тяжелые инфекции, такие как бактериемия и менингит, а также для рекомендации необходимого количества антибиотиков в зависимости от массы тела пациента. Она была автономной системой, требующей от пользователя набора всей необходимой информации. Фактически, MYCIN никогда не использовалась на практике. Главной трудностью, с которой столкнулись во время разработки MYCIN и последующих экспертных систем, было «извлечение» знаний из опыта людей-экспертов для формирования базы правил.

Этим термином принято характеризовать поведение множества экспертных систем, ориентированных на выполнение таких задач, как диагноз и интерпретация данных. Хороших примером послужит консультация по принятию оплаты предлагаемой кредитной картой. В данном случае сразу станет доступна информация о владельце кредитной карты, его платежные сведения, информация о текущей покупке, а также о учреждении где она совершается (например, были ли зафиксированы случаи мошенничества с использованием банковских карточек в данном заведении).

Коммерческие программы по распознаванию речи появились в начале девяностых годов, и с того времени все большую популярность применение распознавания речи находит в различных сферах бизнеса, например, врач в поликлинике может проговаривать диагнозы, которые тут же будут внесены в электронную карточку. Наверняка каждый хоть раз в жизни мечтал с помощью голоса выключить свет или открыть окно. В последнее время в телефонных интерактивных приложениях все чаще стали использоваться системы автоматического распознавания и синтеза речи. В этом случае общение с голосовым порталом становится более естественным, так как выбор в нём может быть осуществлен не только с помощью тонового набора, но и с помощью голосовых команд. При этом системы распознавания являются независимыми от дикторов, то есть распознают голос любого человека.

Обработка естественного языка

Понимание естественного языка иногда считают AI-полной задачей, потому как распознавание живого языка требует огромных знаний системы об окружающем мире и возможности с ним взаимодействовать. Сейчас не достаточно получить лишь последовательность слов или череду предложений. Мы должны научить компьютер «понимать», а это одна из главных задач искусственного интеллекта. Качество понимания зависит от множества факторов.

Мир состоит из трехмерных объектов, а тот момент когда входные данные для человеческого глаза и телекамер являются двумерными. Компьютерное зрение сосредотачивается на обработке трехмерных сцен, спроектированных на одно или несколько изображений. Например, восстановлением структуры или другой информации о трехмерной сцене по одному или нескольким изображениям.

Игровой искусственный интеллект

Сегодня можно легко приобрести дорогостоящие шахматные машины или скачать программы которые могут победить многих профессиональных шахматистов. А лучшие коммерческие программы, благодаря реализации в них технологии искусственного интеллекта, уже превысили уровень людей-чемпионов. Для этого программе нужно вычислять 200 миллионов позиций каждую секунду.

Процесс создания искусственного интеллекта , с первого взгляда кажется довольно таки сложным занятием. Наблюдая за этими красивыми примерами ИИ , можно понять, что создавать интересные программы с ИИ можно. В зависимости от цели, нужны разные уровни знаний. Некоторые проекты требуют глубоких знаний ИИ, другие проекты требуют лишь знания языка программирования, но главный вопрос, которые стоит перед программистом. Какой язык выбрать для программирования искусственного интеллекта? Вот список языков для ИИ, которые могут быть полезными.

Первый компьютерный язык, применяемый для создания искусственного интеллекта — ЛИСП. Этот язык является довольно таки гибким и расширяемым. Такие особенности, как быстрое прототипирование и макросы очень полезны в создании ИИ. LISP — это язык, который превращает сложные задачи в простые. Мощная система объектно-ориентированности делает LISP одним из самых популярных языков программирования для искусственного интеллекта.

Основные преимущества этого многофункционального языка являются: прозрачность, переносимость и удобство сопровождения. Еще одним преимуществом языка Java является универсальность. Если вы новичок, то вас обрадует тот факт, что существуют сотни видеоуроков в Интернете, что сделает ваше обучение легче и эффективнее.

Основными особенностями java являются: легкая отладка, хорошее взаимодействие с пользователем, простота работы с большими проектами. Проекты, созданные с помощью языка Java имеют привлекательный и простой интерфейс.

Prolog

Это интерактивный символический язык программирования популярен для проектов, которые требуют логики. Имея мощную и гибкую основу, она широко применяется для non-численного программирования, доказательства теорем, обработки естественного языка, создания экспертных систем и искусственного интеллекта в целом.

Пролог — это декларативный язык с формальной логикой. Разработчики искусственного интеллекта ценят его за высокий уровень абстракции, встроенный механизм поиска, недетерминизм и т.д.

Python

Python — широко используется программистами из-за его чистой грамматики и синтаксиса, приятного дизайна. Различные структуры данных, куча Фреймворков тестирования, соотношение высокого уровня и низкого уровня программирования, которые делают Питон одним из самых популярных языков программирования для искусственного интеллекта.

История развития ИИ

Для того, чтобы увидеть связь между ИИ и языком программирования, давайте рассмотрим наиболее важные события в истории ИИ. Все началось в 1939 году, когда робот Электро был представлен на Всемирной выставки. Следующий робот был построен в 1951 году, Эдмундом Беркли.

Робот Робби был построен в 1956 году. К сожалению, нет информации о том, как он был разработан. В 1958 году, был изобретен язык программирования ЛИСП. Хотя этот язык был разработан 60 лет назад, он до сих пор остается основным языком для многих программ искусственного интеллекта.

В 1961 году, был построен UNIMATE. Это первый промышленный робот, который выпускается серийно. Этот робот был использован в «Дженерал Моторс» для работы на производственной линии. Для изготовления UNIMATE ученые использовали Валь, переменная ассемблера. Этот язык состоит из простых фраз, команд монитора, и инструкций, которые не требуют пояснений.

Система искусственного интеллекта Dendral, была построена в 1965 году. Она помогала легко определять молекулярную структуру органических соединений. Эта система была написана на Лиспе.

В 1966 году, Weizenbaum создал Элизу, первого виртуального собеседника. Одна из самых знаменитых моделей назывался Доктор, он отвечал на вопросы в стиле психотерапевта. Этот бот был реализован при сопоставлении образцов техники. Первая версия Элизы была написана на SLIP, список обработки языка был разработан Weizenbaum. Позже одна из его версий была переписана на Лиспе.

Первый мобильный робот, запрограммированный на Лиспе был Шеки. С помощью решения задач программы прокладок и датчиков, шейки двигался, включал и выключал свет, поднимался вверх и вниз, открывал двери, закрывал двери, толкал предметы, и двигал вещи. Перемещался Шеки со скоростью 5 км в час.

В ближайшие 15 лет мир увидел множество удивительных изобретений: Сторожевого робота Деннинг, ЛМИ Лямбда, Omnibot 2000, MQ-1 Predator беспилотный, Ферби, АЙБО робот собака, и Хонда АСИМО.

В 2003 году iRobot изобрел робот-пылесос Roomba. Разработанный на Лиспе, это автономный пылесос моет полы, используя определенные алгоритмы. Он обнаруживает препятствия и обходит их.

А какой язык программирования используете вы, для разработки программ с ИИ? Напишите о ваших работах в комментариях или в нашей группе вконтакте.

Как случилось, что искусственный интеллект успешно развивается, а «правильного» определения для него до сих пор нет? Почему не оправдались надежды, возлагавшиеся на нейрокомпьютеры, и в чем заключаются три главные задачи, стоящие перед создателем искусственного интеллекта?

На эти и другие вопросы вы найдете ответ в статье под катом, написанной на основе выступления Константина Анисимовича, директора департамента разработки технологий ABBYY, одного из ведущих экспертов страны в сфере искусственного интеллекта.
При его личном участии были созданы технологии распознавания документов, которые применяются в продуктах ABBYY FineReader и ABBYY FormReader. Константин рассказал об истории и основах разработки AI на одном из мастер-классов для студентов Технопарка Mail.Ru. Материал мастер-класса и стал базой для цикла статей.

Всего в цикле будет три поста:

Применение знаний: алгоритмы поиска пространственных состояний
Получение знаний: проектирование интеллектуальных систем и машинное обучение

Взлеты и падения подходов в AI

Еще с 1950-х годов в сфере создания искусственного интеллекта выделилось два подхода — символьные вычисления и коннекционизм. Символьные вычисления – это направление, основанное на моделировании мышления человека, а коннекционизм — на моделировании устройства мозга .

Первыми достижениями в области символьных вычислений были созданный в 50-е годы язык Lisp и работа Дж. Робинсона в области логического вывода. В коннекционизме таковым стало создание персептрона – самообучающегося линейного классификатора, моделирующего работу нейрона. Дальнейшие яркие достижения находились в основном в русле символьной парадигмы. В частности, это работы Сеймура Пайперта и Роберта Антона Уинсона в области психологии восприятия и, конечно, фреймы Марвина Минского.

В 70-е годы появились первые прикладные системы, использующие элементы искусственного интеллекта – экспертные системы. Дальше произошел некий ренессанс коннекционизма с появлением многослойных нейронных сетей и алгоритма их обучения методом обратного распространения. В 80-е годы увлечение нейронными сетями было просто повальным. Сторонники этого подхода обещали создать нейрокомпьютеры, которые будут работать практически как человеческий мозг .

Но ничего особенного из этого не вышло, потому что настоящие нейроны устроены намного сложнее, чем формальные, на которых основаны многослойные нейросети. И количество нейронов в человеческом мозге тоже намного больше, чем можно было позволить себе в нейросети. Основное, для чего оказались пригодны многослойные нейросети – это решение задачи классификации.

Следующей популярной парадигмой в области искусственного интеллекта стало машинное обучение. Подход начал бурно развиваться с конца 80-х годов и не теряет популярности и поныне. Значительный толчок развитию машинного обучения дало появление интернета и большого количества разнообразных легкодоступных данных, которые можно использовать для обучения алгоритмов.

Главные задачи при проектировании искусственного интеллекта

Можно проанализировать, что роднит те задачи, которые относятся к искусственному интеллекту. Несложно заметить, что общее в них — отсутствие известной, четко определенной процедуры решения. Этим, собственно, задачи, относящиеся к AI, отличаются от задач теории компиляции или вычислительной математики. Интеллектуальные системы ищут субоптимальные решения задачи. Нельзя ни доказать, ни гаратировать, что найденное искусственным интеллектом решение будет строго оптимальным. Тем не менее, в большинстве практических задач субоптимальные решения всех устраивают. Более того, нужно помнить, что и человек практически никогда не решает задачу оптимально. Скорее, наоборот.

Возникает очень важный вопрос: как может AI решить задачу, для которой нет алгоритма решения? Суть в том, чтобы делать это так же, как и человек — выдвигать и проверять правдоподобные гипотезы. Естественно, что для выдвижения и проверки гипотез нужны знания.

Знания — это описание предметной области, в которой работает интеллектуальная система. Если перед нами система распознавания символов естественного языка, то знания включают в себя описания устройства символов, структуру текста и тех или иных свойств языка. Если это система оценки кредитоспособности клиента, у нее должны быть знания о типах клиентов и знания о том, как профиль клиента связан с его потенциальной некредитоспособностью. Знания бывают двух типов – о предметной области и о поиске путей решения (метазнания).

Мастер Йода рекомендует:  21 ошибка программиста PHP

Основные задачи проектирования интеллектуальной системы сводятся к выбору способов представления знаний, способов получения знаний и способов применения знаний.

Представление знаний

Существуют два основных способа представления знаний — декларативные и процедурные. Декларативные знания могут быть представлены в структурированном или в неструктурированном виде. Структурированные представления – это та или иная разновидность фреймового подхода. А именно, фреймы или формальные грамматики, которые тоже можно считать разновидностями фреймов. Знания в этих формализмах представлены в виде множества объектов и отношений между ними.

Неструктурированные представления используются обычно в тех сферах, которые связаны с решением задач классификации. Это обычно векторы оценок весовых коэффициентов, вероятностей и тому подобное.

Практически все способы структурированного представления знания базируются на формализме фреймов, которые в 1970-е ввел Марвин Минский из MIT, чтобы обозначить структуру знаний для восприятия пространственных сцен. Как выяснилось, подобный подход годится практически для любой задачи.

Фрейм состоит из имени и отдельных единиц, называемых слотами. Значением слота может быть, в свою очередь, ссылка на другой фрейм… Фрейм может быть потомком другого фрейма, наследуя у него значения слотов. При этом потомок может переопределять значения слотов предка и добавлять новые. Наследование используется для того, чтобы сделать описание более компактным и избежать дублирования.

Несложно заметить, что существует сходство между фреймами и объектно-ориентированным программированием, где фрейму соответствует объект, а слоту — поле. Сходство это неслучайное, потому что фреймы были одним из источников возникновения ООП. В частности, один из первых объектно-ориентированных языков Small Talk практически в точности реализовывал фреймовые представления объектов и классов.

Для процедурного представления знаний используются продукции или продукционные правила. Продукционная модель — это модель, основанная на правилах, позволяющих представить знание в виде предложений «условие — действие». Такой подход раньше был популярен в различных системах диагностики. Достаточно естественно в виде условия описывать симптомы, проблемы или неисправности, а в виде действия — возможную неисправность, которая приводит к наличию этих симптомов.

В следующей статье мы поговорим о способах применения знаний.

Искусственный интеллект: как и где изучать — отвечают эксперты. На каком языке программирования разрабатывать искусственный интеллект

Этой статьей я начинаю серию публикаций, посвященных проблеме программирования искусственного интеллекта. Цель этого цикла — показать, каким образом (в смысле общих принципов) осуществляется программирование искусственного интеллекта.

Само понятие «искусственный интеллект» возникло где-то на заре вычислительной техники. Несмотря на почтенный возраст, термин этот не имеет точного определения и всегда понимался в интуитивном смысле. Обычно говорят, что к области искусственного интеллекта относятся те задачи, которые до сих пор человек решает лучше, чем компьютер. Таким образом, круг решаемых в рамках искусственного интеллекта проблем постоянно динамически изменяется. Например, еще несколько лет назад обучение ЭВМ игре в шахматы являлось прерогативой AI (от английского Artifical Intelligence — искусственный интеллект), но сегодня все больше специалистов считает, что игра в шахматы уже не является проблемой искусственного интеллекта. Сегодня главными проблемами, решаемыми в рамках AI, являются примерно следующие: построение экспертных систем, решение задач поиска, в которых полный перебор вариантов теоретически невозможен (в том числе — программирование игр), моделирование биологических форм, распознавание образов. Фундаментальные принципы решения всех этих задач были заложены еще в начале семидесятых, но, в связи с тем, что задачи AI очень ресурсоемки, настоящее развитие они получили только в наши дни.

Для решения задач AI еще в начале семидесятых годов были созданы два специфических языка программирования — Пролог (Prolog) и Лисп (LISP). Современный разработчик искусственного интеллекта должен свободно владеть каждым из них. Далее остановимся на самых характерных их особенностях.

Исторически Лисп более старый язык. Концепция, которую он представляет, называется функциональным программированием , она является прямым продолжением обычного алгоритмического подхода. Лисп-программа представляет собой функцию, результат вычисления которой — это результат работы программы, а аргументы, чаще всего — другие вызовы функций. В связи с объективными причинами в Лиспе принята бесскобочная запись при вызове функций, вызов любой функции осуществляется при помощи списка, первым элементом которого является название функции, а все остальные элементы представляют аргументы. Например, сложение двух чисел A и B может выглядеть так: (add A B), сложение трех чисел — так: (add A (add B C)). Самой важной особенностью Лиспа является то, что запись вида (add A B) может представлять из себя не только список, как вызов функции, но и список, как элемент данных, содержащий в себе три компоненты — add, A и B. Решение о том, следует ли использовать список как данные, или его необходимо интерпретировать, в рамках Лиспа может приниматься самой программой. Таким образом, программа получает возможность модифицировать собственный код, что чрезвычайно важно для приложений AI.

Пролог для меня более интересен, чем Лисп, поскольку использует подход к программированию, принципиально отличный от алгоритмического и называемый целевым или декларативным программированием. При алгоритмическом программировании мы задаем последовательность действий, которые должна выполнять программа, т.е. описываем, КАК она должна работать. При декларативном программировании мы описываем, ЧТО программа должна делать, а то, как будут осуществлены эти действия — дело Пролог-системы. Рассмотрим типичнейшую Пролог-задачу — определение, в каких родственных отношениях находятся те или иные люди. В качестве исходных выберем отношение родитель(X,Y), обозначающее, что X является родителем Y, и отношения мужчина(X) и женщина (X), обозначающие принадлежность лица к одному из полов. Тогда исходные данные для программы могут выглядеть примерно так.

мужчина(Сергей). женщина(Тамара). мужчина(Семен). женщина (Людмила). мужчина(Павел).

родитель(Сергей, Семен). родитель(Тамара, Семен). родитель(Семен, Павел).

Как можно видеть, это — небольшая база данных, естественно представляющая генеалогическое дерево. Каждое из выражений в ней является утверждением, в Прологе такие утверждения называют фактами. База может быть легко расширена.

Теперь введем выражение дед(X,Y), обозначающее, является ли X дедом Y. Мы используем два Прологовских символа — запятая в следующей записи обозначает логическое и, а символ:- обозначает если.

дед(X,Y):- родитель(X,Z), родитель(Z,Y),мужчина(X).

Эта условная запись является таким же элементом базы данных, как и факты, в Прологе такие элементы принято называть правилами.

На самом деле та Пролог-программа, которую мы написали, умеет делать очень многое (это наверняка удивит тех, кто до сих пор был знаком только с алгоритмическим программированием). После запуска ее на выполнение Пролог-система выдаст запрос на ввод вопроса. Для начала введем дед(X,Павел) (по-русски этот вопрос звучит так: «Кто дед Павла?»), система выдаст X=Сергей. Теперь спросим дед(Тамара, Павел) («Является ли Тамара дедом Павла?»). Получим ответ no (нет). Можно спросить родитель(X,_) (так, как на Прологе _ обозначает, что значение этого элемента отношения для нас не важно, то данная запись по-русски звучит, как «Кто является чьим-либо родителем?»). Получим X=Сергей, X=Тамара, X=Семен, X=Людмила. Этим круг вопросов, которые можно задать нашей программе, далеко не исчерпывается.

Как видим, в задачах, связанных с заданием отношений между объектами, Пролог гораздо мощнее алгоритмических языков типа Паскаля или Си. Если добавить к этому, что база данных Пролога (содержащая факты и правила) может динамически изменяться во время выполнения самой же программой или пользователем, становится ясно, насколько полезен Пролог для разработки в области искусственного интеллекта.

Если читателя заинтересовали Лисп и Пролог, он может изучить их самостоятельно — языки очень просты. Я же в последующих публикациях не буду останавливаться на лингвистических проблемах, стараясь уделить внимание только фундаментальным методам программирования в области AI.

Процесс создания искусственного интеллекта , с первого взгляда кажется довольно таки сложным занятием. Наблюдая за этими красивыми примерами ИИ , можно понять, что создавать интересные программы с ИИ можно. В зависимости от цели, нужны разные уровни знаний. Некоторые проекты требуют глубоких знаний ИИ, другие проекты требуют лишь знания языка программирования, но главный вопрос, которые стоит перед программистом. Какой язык выбрать для программирования искусственного интеллекта? Вот список языков для ИИ, которые могут быть полезными.

Первый компьютерный язык, применяемый для создания искусственного интеллекта — ЛИСП. Этот язык является довольно таки гибким и расширяемым. Такие особенности, как быстрое прототипирование и макросы очень полезны в создании ИИ. LISP — это язык, который превращает сложные задачи в простые. Мощная система объектно-ориентированности делает LISP одним из самых популярных языков программирования для искусственного интеллекта.

Основные преимущества этого многофункционального языка являются: прозрачность, переносимость и удобство сопровождения. Еще одним преимуществом языка Java является универсальность. Если вы новичок, то вас обрадует тот факт, что существуют сотни видеоуроков в Интернете, что сделает ваше обучение легче и эффективнее.

Основными особенностями java являются: легкая отладка, хорошее взаимодействие с пользователем, простота работы с большими проектами. Проекты, созданные с помощью языка Java имеют привлекательный и простой интерфейс.

Prolog

Это интерактивный символический язык программирования популярен для проектов, которые требуют логики. Имея мощную и гибкую основу, она широко применяется для non-численного программирования, доказательства теорем, обработки естественного языка, создания экспертных систем и искусственного интеллекта в целом.

Пролог — это декларативный язык с формальной логикой. Разработчики искусственного интеллекта ценят его за высокий уровень абстракции, встроенный механизм поиска, недетерминизм и т.д.

Python

Python — широко используется программистами из-за его чистой грамматики и синтаксиса, приятного дизайна. Различные структуры данных, куча Фреймворков тестирования, соотношение высокого уровня и низкого уровня программирования, которые делают Питон одним из самых популярных языков программирования для искусственного интеллекта.

История развития ИИ

Для того, чтобы увидеть связь между ИИ и языком программирования, давайте рассмотрим наиболее важные события в истории ИИ. Все началось в 1939 году, когда робот Электро был представлен на Всемирной выставки. Следующий робот был построен в 1951 году, Эдмундом Беркли.

Робот Робби был построен в 1956 году. К сожалению, нет информации о том, как он был разработан. В 1958 году, был изобретен язык программирования ЛИСП. Хотя этот язык был разработан 60 лет назад, он до сих пор остается основным языком для многих программ искусственного интеллекта.

В 1961 году, был построен UNIMATE. Это первый промышленный робот, который выпускается серийно. Этот робот был использован в «Дженерал Моторс» для работы на производственной линии. Для изготовления UNIMATE ученые использовали Валь, переменная ассемблера. Этот язык состоит из простых фраз, команд монитора, и инструкций, которые не требуют пояснений.

Система искусственного интеллекта Dendral, была построена в 1965 году. Она помогала легко определять молекулярную структуру органических соединений. Эта система была написана на Лиспе.

В 1966 году, Weizenbaum создал Элизу, первого виртуального собеседника. Одна из самых знаменитых моделей назывался Доктор, он отвечал на вопросы в стиле психотерапевта. Этот бот был реализован при сопоставлении образцов техники. Первая версия Элизы была написана на SLIP, список обработки языка был разработан Weizenbaum. Позже одна из его версий была переписана на Лиспе.

Первый мобильный робот, запрограммированный на Лиспе был Шеки. С помощью решения задач программы прокладок и датчиков, шейки двигался, включал и выключал свет, поднимался вверх и вниз, открывал двери, закрывал двери, толкал предметы, и двигал вещи. Перемещался Шеки со скоростью 5 км в час.

В ближайшие 15 лет мир увидел множество удивительных изобретений: Сторожевого робота Деннинг, ЛМИ Лямбда, Omnibot 2000, MQ-1 Predator беспилотный, Ферби, АЙБО робот собака, и Хонда АСИМО.

В 2003 году iRobot изобрел робот-пылесос Roomba. Разработанный на Лиспе, это автономный пылесос моет полы, используя определенные алгоритмы. Он обнаруживает препятствия и обходит их.

А какой язык программирования используете вы, для разработки программ с ИИ? Напишите о ваших работах в комментариях или в нашей группе вконтакте.

Процесс создания искусственного интеллекта , с первого взгляда кажется довольно таки сложным занятием. Наблюдая за этими красивыми примерами ИИ , можно понять, что создавать интересные программы с ИИ можно. В зависимости от цели, нужны разные уровни знаний. Некоторые проекты требуют глубоких знаний ИИ, другие проекты требуют лишь знания языка программирования, но главный вопрос, которые стоит перед программистом. Какой язык выбрать для программирования искусственного интеллекта? Вот список языков для ИИ, которые могут быть полезными.

Первый компьютерный язык, применяемый для создания искусственного интеллекта — ЛИСП. Этот язык является довольно таки гибким и расширяемым. Такие особенности, как быстрое прототипирование и макросы очень полезны в создании ИИ. LISP — это язык, который превращает сложные задачи в простые. Мощная система объектно-ориентированности делает LISP одним из самых популярных языков программирования для искусственного интеллекта.

Основные преимущества этого многофункционального языка являются: прозрачность, переносимость и удобство сопровождения. Еще одним преимуществом языка Java является универсальность. Если вы новичок, то вас обрадует тот факт, что существуют сотни видеоуроков в Интернете, что сделает ваше обучение легче и эффективнее.

Основными особенностями java являются: легкая отладка, хорошее взаимодействие с пользователем, простота работы с большими проектами. Проекты, созданные с помощью языка Java имеют привлекательный и простой интерфейс.

Prolog

Это интерактивный символический язык программирования популярен для проектов, которые требуют логики. Имея мощную и гибкую основу, она широко применяется для non-численного программирования, доказательства теорем, обработки естественного языка, создания экспертных систем и искусственного интеллекта в целом.

Пролог — это декларативный язык с формальной логикой. Разработчики искусственного интеллекта ценят его за высокий уровень абстракции, встроенный механизм поиска, недетерминизм и т.д.

Python

Python — широко используется программистами из-за его чистой грамматики и синтаксиса, приятного дизайна. Различные структуры данных, куча Фреймворков тестирования, соотношение высокого уровня и низкого уровня программирования, которые делают Питон одним из самых популярных языков программирования для искусственного интеллекта.

История развития ИИ

Для того, чтобы увидеть связь между ИИ и языком программирования, давайте рассмотрим наиболее важные события в истории ИИ. Все началось в 1939 году, когда робот Электро был представлен на Всемирной выставки. Следующий робот был построен в 1951 году, Эдмундом Беркли.

Робот Робби был построен в 1956 году. К сожалению, нет информации о том, как он был разработан. В 1958 году, был изобретен язык программирования ЛИСП. Хотя этот язык был разработан 60 лет назад, он до сих пор остается основным языком для многих программ искусственного интеллекта.

В 1961 году, был построен UNIMATE. Это первый промышленный робот, который выпускается серийно. Этот робот был использован в «Дженерал Моторс» для работы на производственной линии. Для изготовления UNIMATE ученые использовали Валь, переменная ассемблера. Этот язык состоит из простых фраз, команд монитора, и инструкций, которые не требуют пояснений.

Система искусственного интеллекта Dendral, была построена в 1965 году. Она помогала легко определять молекулярную структуру органических соединений. Эта система была написана на Лиспе.

В 1966 году, Weizenbaum создал Элизу, первого виртуального собеседника. Одна из самых знаменитых моделей назывался Доктор, он отвечал на вопросы в стиле психотерапевта. Этот бот был реализован при сопоставлении образцов техники. Первая версия Элизы была написана на SLIP, список обработки языка был разработан Weizenbaum. Позже одна из его версий была переписана на Лиспе.

Первый мобильный робот, запрограммированный на Лиспе был Шеки. С помощью решения задач программы прокладок и датчиков, шейки двигался, включал и выключал свет, поднимался вверх и вниз, открывал двери, закрывал двери, толкал предметы, и двигал вещи. Перемещался Шеки со скоростью 5 км в час.

В ближайшие 15 лет мир увидел множество удивительных изобретений: Сторожевого робота Деннинг, ЛМИ Лямбда, Omnibot 2000, MQ-1 Predator беспилотный, Ферби, АЙБО робот собака, и Хонда АСИМО.

В 2003 году iRobot изобрел робот-пылесос Roomba. Разработанный на Лиспе, это автономный пылесос моет полы, используя определенные алгоритмы. Он обнаруживает препятствия и обходит их.

А какой язык программирования используете вы, для разработки программ с ИИ? Напишите о ваших работах в комментариях или в нашей группе вконтакте.

«Хочу заниматься ИИ. Что стоит изучить? Какие языки использовать? В каких организациях учиться и работать?»

Мы обратились за разъяснением к нашим экспертам, а полученные ответы представляем вашему вниманию.


Это зависит от Вашей базовой подготовки. Прежде всего, необходима математическая культура (знание статистики, теории вероятностей, дискретной математики, линейной алгебры, анализа и др.) и готовность многому быстро учиться. При реализации методов ИИ потребуется программирование (алгоритмы, структуры данных, ООП и др.).

Разные проекты требуют владения разными языками программирования. Я бы рекомендовал знать как минимум Python, Java и любой функциональный язык. Нелишним будет опыт работы с различными базами данных и распределёнными системами. Чтобы быстро изучать лучшие подходы, применяемые в индустрии, требуется знание английского языка.

Учиться рекомендую в хороших российских вузах! Например, в МФТИ, МГУ, ВШЭ есть соответствующие кафедры. Большое разнообразие тематических курсов доступно на Coursera, edX, Udacity, Udemy и других MOOC площадках. Некоторые ведущие организации имеют собственные программы подготовки в области ИИ (например, Школа анализа данных у Яндекса).

Прикладные задачи, решаемые методами ИИ, можно найти в самых разнообразных местах. Банки, финансовый сектор, консалтинг, ритейл, e-commerce, поисковые системы, почтовые сервисы, игровая индустрия, индустрия систем безопасности и, конечно, Avito — все нуждаются в специалистах различной квалификации.

У нас есть проект по финтеху, связанный с машинным обучением и компьютерным зрением, в котором первый его разработчик писал все на C++, далее пришел разработчик, который все переписал на Python. Так что язык тут не самое главное, так как язык — это прежде всего инструмент, и от вас зависит, как его использовать. Просто на каких-то языках задачи решать быстрее, а на других более медленно.

Где учиться, сказать сложно — все наши ребята учились сами, благо есть интернет и Google.

Могу посоветовать с самого начала готовить себя к тому, что учиться придётся много. Вне зависимости от того, что подразумевается под «заниматься ИИ» — работа с большими данными либо нейросети; развитие технологии или поддержка и обучение некой определённой уже разработанной системы.

Давайте ради конкретики возьмём трендовую профессию Data Scientist. Что делает этот человек? В общем и целом — собирает, анализирует и готовит к употреблению большие данные. Именно те, на которых растёт и тренируется ИИ. А что должен знать и уметь Data Scientist? Статический анализ и математическое моделирование – по умолчанию, причём на уровне свободного владения. Языки – скажем, R, SAS, Python. Также хорошо бы иметь какой-никакой опыт разработки. Ну и, вообще говоря, хороший дата-сайнтист должен уверенно себя чувствовать в БД, алгоритмике, визуализации данных.

Не сказать, чтобы такой набор знаний можно было получить в каждом втором техническом вузе страны. Крупные компании, у которых в приоритете разработка ИИ, это понимают и разрабатывают под себя соответствующие учебные программы — существует, например, Школа анализа данных от Яндекса. Но вы должны отдавать себе отчёт, что это не тот масштаб, где ты приходишь на курсы «с улицы», а выходишь с них готовым джуниором. Пласт большой, и идти учиться по дисциплине имеет смысл тогда, когда уже охвачена база (математика, статистика) хотя бы в рамках вузовской программы.

Да, времени уйдёт порядочно. Но игра стоит свеч, потому что хороший Data Scientist – это очень перспективно. И очень дорого. Есть ещё и другой момент. Искусственный интеллект – это, с одной стороны, уже не просто объект ажиотажа, а вполне себе вышедшая на виток продуктивности технология. С другой стороны, ИИ всё ещё только развивается. Для этого развития требуется много ресурсов, много навыков и много денег. Пока это уровень высшей лиги. Я сейчас скажу очевидную вещь, но, если вы хотите оказаться на острие атаки и своими руками двигать прогресс, цельтесь в компании уровня Facebook или Amazon.

В то же время в ряде областей технологию уже применяют: в банковской сфере, в телекоме, на промышленных предприятиях-гигантах, в ритейле. И там уже нужны люди, способные её поддерживать. Gartner прогнозирует, что к 2020 году 20% всех предприятий в развитых странах будут нанимать специальных сотрудников для тренировки нейронных сетей, используемых в этих компаниях. Так что пока ещё есть немного времени, чтобы подучиться самому.

ИИ сейчас активно развивается, и предсказывать на десять лет вперед сложно. На ближайшие два-три года будут доминировать подходы на базе нейросетей и вычислений на основе GPU. Лидером в этой области является Python с интерактивной средой Jupyter и библиотеками numpy, scipy, tensorflow.

Есть много онлайн-курсов, которые дают базовое представление об этих технологиях и общих принципах ИИ, например курс Andrew Ng. И в плане обучения этой теме сейчас в России эффективнее всего самостоятельное обучение или в локальной группе по интересам (например, в Москве я знаю о существовании как минимум пары групп, где люди делятся опытом и знаниями).

На сегодняшний день самая быстро прогрессирующая часть искусственного интеллекта — это, пожалуй, нейронные сети.
Изучение нейросетей и ИИ стоит начать с освоения двух разделов математики — линейной алгебры и теории вероятности. Это обязательный минимум, незыблемые столпы искусственного интеллекта. Абитуриентам, желающим постичь основы ИИ, при выборе вуза, на мой взгляд, стоит обратить внимание на факультеты с сильной математической школой.

Следующий шаг — изучение проблематики вопроса. Существует огромное количество литературы, как учебной, так и специальной. Большинство публикаций по теме искусственного интеллекта и нейросетей написаны на английском языке, однако русскоязычные материалы тоже публикуются. Полезную литературу можно найти, например, в общедоступной цифровой библиотеке arxiv.org .

Если говорить о направлениях деятельности, то здесь можно выделить обучение прикладных нейронных сетей и разработку совершенно новых вариантов нейросетей. Яркий пример: существует такая очень востребованная сейчас специальность — «дата-сайентист» (Data Scientist). Это разработчики, которые, как правило, занимаются изучением и подготовкой неких наборов данных для обучения нейросетей в конкретных, прикладных областях. Резюмируя, подчеркну, что каждая специализация требует отдельного пути подготовки.

Прежде чем приступать к узкопрофильным курсам, нужно изучить линейную алгебру и статистику. Погружение в ИИ я бы посоветовал начать с учебника «Машинное обучение. Наука и искусство построения алгоритмов, которые извлекают знания из данных», это неплохое пособие для начинающих. На Coursera стоит послушать вводные лекции К. Воронцова (подчеркну, что они требуют хорошего знания линейной алгебры) и курс «Machine Learning» Стэнфордского университета, который читает Andrew Ng, профессор и глава Baidu AI Group/Google Brain.

Основная масса пишется на Python, потом идут R, Lua.

Если говорить об учебных заведениях, лучше поступить на курсы при кафедрах прикладной математики и информатики, подходящие образовательные программы есть. Для проверки своих способностей можно принять участие в соревнованиях Kaggle, где предлагают свои кейсы крупные мировые бренды.

В любом деле, прежде чем приступать к проектам, хорошо бы получить теоретический базис. Есть много мест, где можно получить формальную степень магистра по этому направлению, либо повысить свою квалификацию. Так, например, Сколтех предлагает магистерские программы по направлениям «Computational Science and Engineering» и «Data Science», куда входит курсы «Machine Learning» и «Natural Language Processing». Можно также упомянуть Институт Интеллектуальных Кибернетических систем НИЯУ МИФИ, Факультет вычислительной математики и кибернетики МГУ и Кафедру «Интеллектуальные системы» МФТИ.

Если же формальное образование уже имеется, есть ряд курсов на различных платформах MOOC. Так, например, EDx.org предлагает курсы по искусственному интеллекту от Microsoft и Колумбийского университета, последний из которых предлагает микро-магистерскую программу за умеренные деньги. Хотелось бы особо отметить, что обычно сами знания вы можете получить и бесплатно, оплата идет только за сертификат, если он нужен для вашего резюме.

Если же вы хотите «глубоко погрузиться» в тему, ряд компаний в Москве предлагает недельные интенсивы с практическими занятиями, и даже предлагают оборудование для экспериментов (например, newprolab.com), правда, цена таких курсов от нескольких десятков тысяч рублей.

Из компаний, которые занимаются разработкой Искусственного Интеллекта, вы наверняка знаете Яндекс и Сбербанк, но есть и многие другие разных размеров. Например, на этой неделе Минобороны открыло в Анапе Военный инновационный технополис ЭРА, одной из тем которого является разработка ИИ для военных нужд.

Прежде чем изучать искусственный интеллект, надо решить принципиальный вопрос: красную таблетку взять или синюю.
Красная таблетка — стать разработчиком и окунуться в жестокий мир статистических методов, алгоритмов и постоянного постижения непознанного. С другой стороны, не обязательно сразу кидаться в «кроличью нору»: можно стать управленцем и создавать ИИ, например, как менеджер проекта. Это два принципиально разных пути.

Первый отлично подходит, если вы уже решили, что будете писать алгоритмы искусственного интеллекта. Тогда вам надо начать с самого популярного направления на сегодняшний день – машинного обучения. Для этого нужно знать классические статистические методы классификации, кластеризации и регрессии. Полезно будет также познакомиться с основными мерами оценки качества решения, их свойствами… и всем, что попадется вам по пути.

Только после того, как база освоена, стоит проштудировать более специальные методы: деревья принятия решений и ансамбли из них. На этом этапе нужно глубоко погрузиться в основные способы построения и обучения моделей — они скрываются за едва приличными словами беггинг, бустинг, стекинг или блендинг.

Тут же стоит познать методы контроля переобучения моделей (еще один «инг» — overfitting).

И, наконец, совсем уж джедайский уровень — получение узкоспециальных знаний. Например, для глубокого обучения потребуется овладеть основными архитектурами и алгоритмами градиентного спуска. Если интересны задачи обработки естественного языка, то рекомендую изучить рекуррентные нейронные сети. А будущим создателям алгоритмов для обработки картинок и видео стоит хорошенько углубиться в свёрточные нейронные сети.

Две последние упомянутые структуры — кирпичики популярных сегодня архитектур: состязательных сетей (GAN), реляционных сетей, комбинированных сетей. Поэтому изучить их будет нелишним, даже если вы не планируете учить компьютер видеть или слышать.

Совсем другой подход к изучению ИИ — он же «синяя таблетка» — начинается с поиска себя. Искусственный интеллект рождает кучу задач и целых профессий: от руководителей ИИ-проектов до дата-инженеров, способных готовить данные, чистить их и строить масштабируемые, нагруженные и отказоустойчивые системы.

Так что при «менеджерском» подходе сначала стоит оценить свои способности и бэкграунд, а уже потом выбирать, где и чему учиться. Например, даже без математического склада ума можно заниматься дизайном ИИ-интерфейсов и визуализациями для умных алгоритмов. Но приготовьтесь: уже через 5 лет искусственный интеллект начнет вас троллить и называть «гуманитарием».

Основные методы ML реализованы в виде готовых библиотек, доступных к подключению на разных языках. Наиболее популярными языками в ML сегодня являются: C++, Python и R.

Есть множество курсов как на русском, так и английском языках, таких как Школа анализа данных Яндекса, курсы SkillFactory и OTUS. Но прежде чем инвестировать время и деньги в специализированное обучение, думаю, стоит «проникнуться темой»: посмотреть открытые лекции на YouTube с конференций DataFest за прошлые годы, пройти бесплатные курсы от Coursera и «Хабрахабра».

И когда все описанные знания будут усвоены, мы с нетерпением ждем юных падаванов к нам в команду Navicon, где поможем и научим, как подружиться с «искусственными интеллектуалами» в реальной жизни.

Тема ИИ и машинного обучения стала значительно более демократичной, чем несколько лет назад.
В интернете можно найти платные и бесплатные курсы на эту тему, инструменты становятся более простыми и менее требовательными как к знаниям, так и к аппаратному обеспечению.

Как опытным, так и начинающим программистам рекомендую начать с онлайн-курсов на MOOC-площадках. Например, на Coursera есть отличная специализация «Машинное обучение и анализ данных» от Яндекса и Высшей школы экономики. Если нет проблем с пониманием лекций на английском языке, там же можно пройти курс Эндрю Ына «Machine Learning».

Основные языки программирования для работы в области ИИ и машинного обучения — R и Python. Долгое время эти языки использовались в академических кругах и для них было создано большое количество библиотек. Сейчас развиваются инструменты, позволяющие быстро стартовать свой проект: Keras, TensorFlow, Theano, Caffe, scikit-learn. Последнее время Microsoft начал активно развивать свои инструменты: CNTK, ML.NET. Они позволяют создавать интеллектуальные решения на языке C#.

Найти работу, не имея практического опыта в сфере анализа данных и машинного обучения, сейчас довольно сложно. Но можно обучаться самостоятельно на онлайн-курсах, участвовать в соревнованиях на Kaggle и подобных платформах. Это позволит наработать портфолио, которое станет вашим конкурентным преимуществом при поиске работы.

Экспертам, а мы соберём на него ответы, если он окажется интересным. Вопросы, которые уже задавались, можно найти в списке выпусков . Если вы хотите присоединиться к числу экспертов и прислать ответ от вашей компании или лично от вас, то пишите на , мы расскажем как это сделать.

2. Феномен мышления.

3. Создание искусственного интеллекта.

3.1 Механический подход.

3.2 Электронный подход.

3.3 Кибернетический подход.

3.4 Нейронный подход.

3.5 Появление перцептрона.

5. Список литературы.

Современные философы и исследователи науки часто рассматривают междисциплинарные науки как одно из достижений заново открытых в 20 веке.

Искусственный Интеллект и искусственная жизнь представляет прекрасный пример такой интеграции многих научных областей.

К сожалению, жизнь слишком сложна, чтобы можно было наметить общие направления в исследованиях. Доказательством может служить тот факт, что некоторые заинтересованы в исследовании «систем, демонстрирующих феномены живых систем», другие изучают природу химического репродуцирования или пытаются решить философские проблемы самопознания.

В понятие «искусственный интеллект» вкладывается различный смысл – от признания интеллекта у ЭВМ оснащенных программными продуктами распознавания текста и речи до отнесения к интеллектуальным лишь тех систем, которые решают весь комплекс задач, осуществляемых человеком.

Теория искусственного интеллекта при решении многих задач сталкивается с определёнными проблемами. Одна из таких проблем состоит в выяснении вопроса, доказуема ли теоретически (математически) возможность или невозможность искусственного интеллекта.

На этот счёт существуют две точки зрения. Одни считают математически доказанным, что ЭВМ в принципе может выполнить любую функцию, осуществляемую естественным интеллектом. Другие полагают в такой же мере доказанным математически, что есть проблемы, решаемые человеческим интеллектом, которые принципиально недоступны ЭВМ. Эти взгляды высказываются как кибернетиками так и философами. Одна из многих проблем (можно сказать основная) состоит в том, что системы, обладающие психикой, отличаются от ЭВМ тем, что им присущи биологические потребности.

Отражение внешнего мира проходит через призму этих потребностей, в чем выражается активность психической системы. ЭВМ не имеет потребностей, для неё информация незначима, безразлична. У человека над слоем биологических потребностей надстраиваются социальные потребности, и информация для него не только биологически но социально значима. Однако технические системы все-таки могут иметь аналог телесной организации. Развитая кибернетическая система обладает рецепторными и эффекторными придатками. На практике под крышей термина искусственная жизнь гнездится грандиозное разнообразие различных проектов от моделей копирования ДНК и систем с обратной связью до изучения коллективного разума и динамики роста населения.

2. ФЕНОМЕН МЫШЛЕНИЯ.

Машины уже научились слагать стихи, сочинять музыку, рисовать картины. Возможно, кому-то покажется, что это – несомненный признак их разумности. Ведь если ЭВМ доступно творчество, которое всегда считалось свойством высокого интеллекта, то справедливо ли отказывать ей в разуме?

Всё же большинство из нас едва ли согласятся считать рисующую и сочиняющую стихи ЭВМ мыслящей. Что же тогда следует называть мышлением?(2)

Далёкому от науки человеку трудно себе представить, как много умеют делать современные кибернетические устройства. Стоит хотя бы упомянуть о так называемых «экспертных системах», которые на основе имеющихся в их памяти сведений анализируют состояние больного, режим технологического процесса, дают советы, как поступить в той или иной ситуации. При этом ЭВМ не только сообщает своё решение, но и объясняет, почему оно должно быть таковым. По сравнению с электронной памятью, выдачей архивных справок и математическими вычислениями, что сегодня у большинства людей ассоциируется сегодня с образом компьютера, это – качественно новая ступень интеллектуальной деятельности, когда на основе имеющегося вырабатывается новое знание. До сих пор это считалось неоспоримой привилегией человеческого мозга. Неудивительно, что тому, кто впервые встречается с подобными системами, часто просто не верится, что он имеет дело с «железной ЭВМ», а не со спрятавшимся где-то оператором-человеком.

Способность ЭВМ выполнять математические расчеты, к чему мы привыкли, ещё совсем недавно рассматривалась как одна из самых высших ступеней духовной деятельности человека. Комплексные числа, с которыми легко оперирует почти любая ЭВМ, Г.Лейбниц, сам выдающийся математик, называл «духовными амфибиями», удивительным «порождением духа Божьего», а писатель В.Одоевский в своей «Русской речи» писал о нашей способности к вычислениям как о каком-то непостижимом, почти мистическом свойстве: При всяком математическом процессе мы чувствуем, как к нашему существу присоединяется какое-то другое, чужое, которое трудится, думает, вычисляет, а между тем наше истинное существо как бы перестаёт действовать, не принимая никакого участия в этом процессе, как в деле постороннем, ждёт своей собственной пищи, а именно связи, которая должна существовать между ним и этим процессом, — и этой связи мы не находим».

Можно представить, как был бы поражён Одоевский, узнав о вычислительных способностях наших ЭВМ! Тем не менее, мы не считаем их думающими.

Любая вычислительная машина, каким бы поразительным ни было её «умение» обучаться, работает на основе заранее составленной для неё программы и поступающих внешних данных. Правда, мы, люди, тоже реализуем определенные программы действий, особенно в первые месяцы жизни, когда наше поведение почти целиком определяется заложенной в нас генетической программой. Однако принципиальное различие в том, что человек способен мотивированно, т.е. в зависимости от определённых условий, изменять программу и делает это так, что между Сарой и новой программами нет непрерывного логического мостика. Как это происходит, тоже пока не ясно, тут много споров и различных точек зрения, но это уже другой вопрос, важно, что современные вычислительные машины этим свойством не обладают. Вот если бы случилось так, что какая-то ЭВМ, решившая, скажем задачи по электромагнетизму и квантовой механике, объединила бы эти два раздела науки и вывела уравнения квантовой электродинамики, а потом с их помощью предсказала бы новые явления в этой неизвестной ей ранее области, тогда, наверное, мы были бы в праве назвать её думающей. И прежде всего потому, что она сама, без всякой программной подсказки, решила заняться качественно новой задачей. Слово «решила» как раз и означает, что она мыслит.

Всякая интеллектуальная задача представляет собой поиск способа достижения поставленной цели, а иначе это будет не решением задачи, а просто действием по точной инструкции.

Когда мы говорим, что школьник решает задачу, это означает прежде всего, что он должен сообразить, какую взять для этого формулу, какие подставить в неё числа. Однако, если он, заглядывая в тетрадь соседа, подставляет указанные там числа в написанную на доске формулу, это уже не решение, а механическое повторение. Именно так ведут себя современные ЭВМ. Строго говоря, никаких задач они не решают, и часто используемое нами выражение «ЭВМ решает» имеет условный смысл…

Способность ставить задачу и самопрограмироваться на её решение – это как раз и есть главное, что характеризует феномен мышления.

Можно возразить данному утверждению, отметив, что и рыбы, и примитивные амёбы в погоне за добычей, тоже ставят себе задачи, изменяющиеся в зависимости от конкретных условий, значит – и они мыслят?

Это могут быть примитивные формы мышления, ведь объяснить поведение животных во всём многообразии жизненных ситуаций одним лишь инстинктом – это гипотеза.(2)

Животным и птицам присуще такое свойство мышления, как способность к обобщению. Например, они узнают пищу в различных конкретных формах, так сказать – пищу вообще.

Наше обыденное понимание разумного слишком очеловечено, и, подобно тому, как в XIX веке многим казалась нелепой сама мысль о преемственной связи между человеком и обезьяной сегодня многих из нас смущает мысль о возможности нечеловеческого интеллекта. В частности, сами того не замечая, мы часто связываем представление о мышлении со способностью осознавать своё собственное «я», и это мешает нам более широко взглянуть на феномен мышления. Правда, связь между мышлением и чувством «я», по-видимому, действительно существует. Можно думать, что в условиях прихотливо изменяющейся внешней обстановки сложная система будет устойчивой лишь в том случае, если она обладает способностью ощущать своё состояние, а в этом и состоит суть нашего «я». Анализ показывает, что подобное чувство необходимо уже многим роботам-автоматам. Ведь робот, да и вообще всякая сложная самообучающаяся и активно общающаяся с человеком машина должна сообщать ему о состоянии своей памяти, о том, что ей понятно, а что – нет и почему. А для этого автомат должен ощущать и быть способным выразить своё состояние. Это нужно роботу и для того, чтобы вовремя заметить неполадки в своём «организме». Не осознающий себя робот едва ли сможет долго просуществовать в сложной, быстро меняющейся и воздействующей на него обстановке.

3.СОЗДАНИЕ ИСКУССТВЕННОГО ИНТЕЛЛНКТА.

С конца 40-х годов ученые все большего числа университетских и промышленных исследовательских лабораторий устремились к дерзкой цели: построение компьютеров, действующих таким образом, что по результатам работы их невозможно было бы отличить от человеческого разума.

Терпеливо продвигаясь вперед в своем нелегком труде, исследователи, работающие в области искусственного интеллекта (ИИ), обнаружили, что вступили в схватку с весьма запутанными проблемами, далеко выходя­щими за пределы традиционной информатики. Оказалось, что прежде всего необходимо понять механизмы процесса обучения, природу языка и чувс­твенного восприятия. Выяснилось, что для создания машин, имитирующих работу человеческого мозга, требуется разобраться в том, как действуют миллиарды его взаимосвязанных нейронов. И тогда многие исследователи пришли к выводу, что пожалуй самая трудная проблема, стоящая перед современной наукой — познание процессов функционирования человеческого разума, а не просто имитация его работы. Что непосредственно затраги­вало фундаментальные теоретические проблемы психологической науки. В самом деле, ученым трудно даже прийти к единой точке зрения относи­тельно самого предмета их исследований — интеллекта. Здесь, как в притче о слепцах, пытавшихся описывать слона, пытается придерживаться своего заветного определения.

Искусственный интеллект: как и где изучать — отвечают эксперты. Влияние на экономику и бизнес

Искусственный интеллект (ИИ, англ. Artificial intelligence, AI) — наука и технология создания интеллектуальных машин, особенно интеллектуальных компьютерных программ. ИИ связан со сходной задачей использования компьютеров для понимания человеческого интеллекта, но не обязательно ограничивается биологически правдоподобными методами.

Что такое искусственный интеллект

Интеллект (от лат. intellectus — ощущение, восприятие, разумение, понимание, понятие, рассудок), или ум — качество психики, состоящее из способности приспосабливаться к новым ситуациям, способности к обучению и запоминанию на основе опыта, пониманию и применению абстрактных концепций и использованию своих знаний для управления окружающей средой. Интеллект — это общая способность к познанию и решению трудностей, которая объединяет все познавательные способности человека: ощущение, восприятие, память, представление, мышление, воображение.

В начале 1980-х гг. ученые в области теории вычислений Барр и Файгенбаум предложили следующее определение искусственного интеллекта (ИИ):

Позже к ИИ стали относить ряд алгоритмов и программных систем, отличительным свойством которых является то, что они могут решать некоторые задачи так, как это делал бы размышляющий над их решением человек.

Основные свойства ИИ — это понимание языка, обучение и способность мыслить и, что немаловажно, действовать.

ИИ – комплекс родственных технологий и процессов, развивающихся качественно и стремительно, например:

  • обработка текста на естественном языке
  • экспертные системы
  • виртуальные агенты (чат-боты и виртуальные помощники)
  • системы рекомендаций.

Технологические направления ИИ. Данные Deloitte

Исследования в сфере ИИ

  • Основная статья: Исследования в сфере искусственного интеллекта

Стандартизация в области ИИ

2020: Разработка стандартов в области квантовых коммуникаций, ИИ и умного города

Технический комитет «Кибер-физические системы» на базе РВК совместно с Региональным инжиниринговым центром «СэйфНет» 6 декабря 2020 года начали разработку комплекса стандартов для рынков Национальной технологической инициативы (НТИ) и цифровой экономики . К марту 2020 года планируется разработать документы технической стандартизации в области квантовых коммуникаций , и , сообщили в РВК. Подробнее .

Влияние искусственного интеллекта

Риск для развития человеческой цивилизации

Влияние на экономику и бизнес

  • Влияние технологий искусственного интеллекта на экономику и бизнес

Влияние на рынок труда

Предвзятость искусственного интеллекта

В основе всего того, что является практикой ИИ (машинный перевод, распознавание речи, обработка текстов на естественных языках, компьютерное зрение , автоматизация вождения автомобилей и многое другое) лежит глубинное обучение. Это подмножество машинного обучения , отличающееся использованием моделей нейронных сетей , о которых можно сказать, что они имитируют работу мозга, поэтому их с натяжкой можно отнести к ИИ. Любая модель нейронной сети обучается на больших наборах данных , таким образом, она обретает некоторые «навыки», но то, как она ими пользуется — для создателей остается не ясным, что в конечном счете становится одной из важнейших проблем для многих приложений глубинного обучения. Причина в том, что такая модель работает с образами формально, без какого-либо понимания того, что она делает. Является ли такая система ИИ и можно ли доверять системам, построенным на основе машинного обучения? Значение ответа на последний вопрос выходит за пределы научных лабораторий. Поэтому заметно обострилось внимание средств массовой информации к явлению, получившему название AI bias. Его можно перевести как «необъективность ИИ» или «пристрастность ИИ». Подробнее .

Рынок технологий искусственного интеллекта

Рынок ИИ в России

Мировой рынок ИИ

Сферы применения ИИ

Сферы применения ИИ достаточно широки и охватывают как привычные слуху технологии, так и появляющиеся новые направления, далекие от массового применения, иначе говоря, это весь спектр решений, от пылесосов до космических станций. Можно разделить все их разнообразие по критерию ключевых точек развития.

ИИ — это не монолитная предметная область. Более того, некоторые технологические направления ИИ фигурируют как новые подотрасли экономики и обособленные сущности, одновременно обслуживая большинство сфер в экономике.

Основные коммерческие сферы применения технологий искусственного интеллекта

Развитие применения использования ИИ ведет к адаптации технологий в классических отраслях экономики по всей цепочке создания ценности и преобразует их, приводя к алгоритмизированию практически всего функционала, от логистики до управления компанией.

Использование ИИ в целях обороны и в военном деле

Использование в образовании

Использование ИИ в бизнесе

ИИ в банках

  • Распознавание образов — используется в т.ч. для узнавания клиентов в отделениях и передачи им специализированных предложений.

Основные коммерческие сферы применения технологий искусственного интеллекта в банках

ИИ на транспорте

  • Автоиндустрия на пороге революции: 5 вызовов эры беспилотного вождения

ИИ в логистике

ИИ в пивоварении

Использование ИИ в госуправлении

ИИ в криминалистике

  • Распознавание образов — используется в т.ч. для выявления преступников в общественных пространствах.
  • В мае 2020 года стало известно об использовании голландской полицией искусственного интеллекта для расследования сложных преступлений.

Как сообщает издание The Next Web, правоохранительные органы начали оцифровывать более 1500 отчетов и 30 млн страниц, связанных с нераскрытыми делами. В компьютерный формат переносят материалы, начиная с 1988 года, в которых преступление не раскрывалось не менее трех лет, и преступник были приговорен к более 12 годам лишения свободы.

Раскрыть сложное преступление за день. Полиция берет ИИ на вооружение

После оцифровки всего контента он будет подключен к системе машинного обучения , которая будет анализировать записи и решать, в каких делах используются самые достоверные доказательства. Это должно снизить время обработки дел и раскрытия прошлых и будущих преступлений с нескольких недель до одного дня.

Искусственный интеллект будет распределять дела по их «разрешимости» и указывать на возможные результаты экспертизы ДНК. Затем планируется автоматизировать анализ и в других областях судебной экспертизы и, возможно, даже охватить данные в таких областях, как общественные науки и свидетельские показания.

Кроме того, как рассказал один разработчиков системы Джерун Хаммер (Jeroen Hammer), в будущем могут быть выпущены API -функции для партнёров.

В голландской полиции есть специальное подразделение, специализирующееся на освоении новых технологий для раскрытия преступлений. Именно он и создало ИИ-систему для быстрого поиска преступников по уликам.

ИИ в судебной системе

Разработки в области искусственного интеллекта помогут кардинально изменить судебную систему, сделать ее более справедливой и свободной от коррупционных схем. Такое мнение высказал летом 2020 года доктор технических наук, технический консультант Artezio Владимир Крылов.

Ученый считает, что уже существующие сейчас решения в области AI можно успешно применять в разных сферах экономики и общественной жизни. Эксперт указывает, что AI успешно применяется в медицине, однако в будущем способен полностью изменить и судебную систему.

«Ежедневно просматривая новостные сообщения о разработках в области ИИ только поражаешься неисчерпаемости фантазии и плодотворности исследователей и разработчиков в этой области. Сообщения о научных исследований постоянно чередуются с публикациями о новых продуктах, врывающихся на рынок и сообщениями об удивительных результатах, полученных с помощью применения ИИ в различных областях. Если же говорить об ожидаемых событиях, сопровождаемых заметным хайпом в СМИ, в котором ИИ станет снова героем новостей, то я, наверное, не рискну делать технологических прогнозов. Могу предположить, что ближайшим событием станет появление где-то предельно компетентного суда в форме искусственного интеллекта, справедливого и неподкупного. Случится это, видимо, в 2020-2025 году. И процессы, которые пройдут в этом суде приведут к неожиданным рефлексиям и стремлению многих людей передать ИИ большинство процессов управления человеческим обществом».

Использование искусственного интеллекта в судебной системе ученый признает «логичным шагом» по развитию законодательного равенства и справедливости. Машинный разум не подвержен коррупции и эмоциям, может четко придерживаться законодательных рамок и выносить решения с учетом многих факторов, включая данные, которые характеризуют участников спора. По аналогии с медицинской сферой, роботы -судьи могут оперировать большими данными из хранилищ государственных служб. Можно предположить, что машинный интеллект сможет быстро обрабатывать данные и учитывать значительно больше факторов, чем судья-человек.

Эксперты-психологи, впрочем, считают, что отсутствие эмоциональной составляющей при рассмотрении судебных дел негативно скажется на качестве решения. Вердикт машинного суда может оказаться слишком прямолинейным, не учитывающим важность чувств и настроения людей.

Заменяют журналистов, писателей и поэтов?

Видео

Музыка

Живопись

В 2015 году команда Google тестировала нейронные сети на предмет возможности самостоятельно создавать изображения. Тогда искусственный интеллект обучали на примере большого количества различных картинок. Однако, когда машину «попросили» самостоятельно что-нибудь изобразить, то оказалось, что она интерпретирует окружающий нас мир несколько странно. Например, на задачу нарисовать гантели, разработчики получили изображение, в котором металл был соединён человеческими руками. Вероятно, произошло это из-за того, что на этапе обучения анализируемые картинки с гантелями содержали руки, и нейронная сеть неверно это интерпретировала.

26 февраля 2020 года в Сан-Франциско на специальном аукционе представители Google выручили с психоделических картин, написанных искусственным интеллектом, порядка $98 тыс. Данные средства были пожертвованы на благотворительность. Одна из наиболее удачных картин машины представлена ниже.

Картина, написанная искусственным интеллектом Google.

  • инвестиционный институт
  • Институт иммунологии
  • Институт инноватики
  • Институт информатики
  • Институт истории
  • интернет-индекс
  • искусственная инсеминация
  • извещение об изменении
  • компонент сложносоставных слов, искусственный интеллект : ИИ-Комьюнити, ИИ-сообщество, ИИ-программист.

    Топонимы

    Примечания

    Wikimedia Foundation . 2010 .

    • Мосты Нижнего Новгорода
    • Хроники всплывшего мира

    Смотреть что такое «ИИ (значения)» в других словарях:

    значения теории — ЗНАЧЕНИЯ ТЕОРИИ. Понятие значения в аналитической философии языка фактически является аналогом того, что в философии сознания именуется «mind», «consciousness» (англ.), или «Geist» (нем.), т.е. сознанием, духом. В понятии значения… … Энциклопедия эпистемологии и философии науки

    ЗНАЧЕНИЯ ВОЗРАСТА СОГЛАСУЮЩИЕСЯ — хорошо совпадающие друг с другом значения возраста, получаемые свинцово изотопным методом по разл. изотопным отношениям. Свидетельствуют о хорошей сохранности м ла и достоверности найденного абс. возраста. Син.: значения возраста конкордантные.… … Геологическая энциклопедия

    ЗНАЧЕНИЯ ВТОРЫХ ПРОИЗВОДНЫХ ГРАВИТАЦИОННОГО ПОТЕНЦИАЛА НОРМАЛЬНЫЕ — теоретические значения производных потенциала, соответствующие идеализированной модели Земли. Они пренебрежимо малы либо точно равны нулю, поэтому измеренные значения вторых производных гравитационного потенциала практически можно считать… … Геологическая энциклопедия

    ЗНАЧЕНИЯ СИЛЫ ТЯЖЕСТИ НОРМАЛЬНЫЕ — (g 0) теоретические значения силы тяжести, действующей на единичную массу, соответствуют такой модели Земли, у которой плотность внутри сферических оболочек постоянна и изменяется только с глубиной. Структура их аналитического выражения… … Геологическая энциклопедия

    ЗНАЧЕНИЯ ВОЗРАСТА ДИСКОРДАНТНЫЕ — син. термина значения возраста несогласующиеся или расходящиеся. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия

    ЗНАЧЕНИЯ ВОЗРАСТА НЕСОГЛАСУЮЩИЕСЯ ИЛИ РАСХОДЯЩИЕСЯ — получаемые свинцово изотопным методом по четырем разл. Изотопным отношениям: , и сильно расходящиеся между собой по величине. Свидетельствуют о плохой сохранности м ла и о нарушении в нем радиоактивного равновесия между материнскими и… … Геологическая энциклопедия

    ЗНАЧЕНИЯ ВОЗРАСТАКОНКОРДАНТНЫЕ — син. термина значения возраста согласующиеся. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия

    значения параметров аномального режима работы — данные аномального режима работы [Интент] Параллельные тексты EN RU The P63x generates a large number of signals, processes binary input signals, and acquires measured data during fault free operation of the protected object as well as fault… …

    Термины и понятия общей морфологии: Словарь-справочник

    значения глагольной ориентации — Значения пространственной модификации действий и производные от них … Словарь лингвистических терминов Т.В. Жеребило

    значения (напряжения) между линией и землёй — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN line to ground values … Справочник технического переводчика

    Книги

    • Значения множественного числа в русском языке , А. Потебня. Воспроизведено в оригинальной авторской орфографии издания 1888 года (издательство`Воронеж`). В…

    Искусственный интеллект — причина, по которой нам конец?

    Что такое искусственный интеллект и чего на самом деле боятся люди?

    Искусственный интеллект — тема, о которой каждый сформировал своё мнение.

    Эксперты в этом вопросе разбились на два лагеря.
    В первом считают, что искусственного интеллекта не существует, во втором — что он есть.

    Кто из них прав — разбирался Rusbase.

    Искусственный интеллект и негативные последствия имитации

    Основная причина споров об искусственном интеллекте — понимание термина. Камнем преткновения стали само понятие интеллекта и. муравьи. Отрицающие существование ИИ люди опираются на то, что нельзя создать искусственный интеллект, потому что не изучен интеллект человеческий, а следовательно — воссоздать его подобие невозможно.

    Второй аргумент, которым оперируют «неверующие», заключается в кейсе с муравьями. Основной тезис кейса — муравьи долгое время считались существами, у которых есть интеллект, но после исследований стало ясно, что они его имитировали. А имитация интеллекта не означает его наличие. Поэтому всё, что имитирует разумное поведение — интеллектом назвать нельзя.

    Другая половина лагеря (утверждающая, что ИИ есть) на муравьях и природе человеческого разума не зацикливается. Вместо этого они оперируют более практическими понятиями, смысл которых заключается в том, что искусственный интеллект — свойство машин выполнять интеллектуальные функции человека. Но что считать интеллектуальными функциями?

    История искусственного интеллекта и кому это пришло в голову

    Джон Маккарти, автор термина «искусственный интеллект», определил интеллектуальную функцию как вычислительную составляющую способности достигать целей. Само определение искусственного интеллекта Маккарти объяснил как науку и технологию создания интеллектуальных компьютерных программ.

    Определение Маккарти появилось позже, чем само научное направление. Ещё в середине прошлого века учёные пытались понять, как работает человеческий мозг. Потом появились теории вычислений, теории алгоритмов и первые в мире компьютеры, вычислительные возможности которых натолкнули светил науки на мысли о том, сможет ли машина сравниться с разумом человека.

    Вишенкой на торте стало решение Алана Тьюринга, который нашёл способ проверить разумность компьютера — и создал тест Тьюринга, определяющий, может ли мыслить машина.

    Так что такое искусственный интеллект и для чего он создан?

    Если не брать в расчёт муравьёв и природу человеческого интеллекта, ИИ в современном контексте — свойство машин, компьютерных программ и систем выполнять интеллектуальные и творческие функции человека, самостоятельно находить способы решения задач, уметь делать выводы и принимать решения.

    Рационально не воспринимать искусственный интеллект как подобие человеческого разума и разделять футурологию и науку, так как ИИ и «Скайнет».

    Тем более большинство современных продуктов, созданных с помощью ИИ-технологий — не новый виток развития искусственного интеллекта, а лишь использование старых инструментов для создания новых и нужных решений.

    Почему апгрейд не считается за развитие искусственного интеллекта

    Но такие ли новые это идеи? Взять, к примеру, Siri, облачного помощника, оснащённого вопросно-ответной системой. Подобный проект был создан ещё в 1966 году и тоже носил женское имя — Элиза. Интерактивная программа поддерживала диалог с собеседником настолько реалистично, что люди в ней признавали живого человека.

    Или промышленные роботы, которые использует Amazon на складе. Задолго до этого в 1956 году роботы Unimation работали в General Motors, перемещая тяжёлые детали и помогая в сборке автомобилей. А интегральный робот Шейки, разработанный в 1966 году и ставший первым мобильным роботом, который управлялся искусственным интеллектом? Не напоминает современную и усовершенствованную Надин?

    Проблемы неестественных интеллектов. Интеллекция Григория Бакунова

    И куда без последнего тренда — нейросетей? Современные стартапы на нейросетях мы знаем — вспомнить хотя бы Prisma. А искусственную нейронную сеть на основе принципа самоорганизации для распознавания образов под названием «Когнитрон», созданную в далёком в 1975 году — нет.

    Интеллектуальные чат-боты тоже не стали исключением. Далёкий праотец чат-ботов — CleverBot, работающий на алгоритме искусственного интеллекта, разработанном еще в 1998 году.

    Поэтому искусственный интеллект не является чем-то новым и уникальным. Пугающим перспективой порабощения человечества феноменом — тем более. Сегодня ИИ — это использование старых инструментов и идей в новых продуктах, отвечающих требованиям современного мира.

    Возможности искусственного интеллекта и неоправданные ожидания

    Если сравнивать искусственный интеллект с человеком, то сегодня его развитие находится на уровне ребёнка, который учится держать ложку, старается встать с четверенек на две ноги и никак не может отвыкнуть от памперсов.

    Мы привыкли видеть ИИ всемогущей технологией. Даже Господа Бога в фильмах не показывают столь всесильным, как вышедшую из под контроля корпорации табличку эксель. Может ли бог отключить всё электричество в городе, парализовать работу аэропорта, слить в интернет секретные переписки глав государств и спровоцировать экономический кризис? Нет, а искусственный интеллект может, но только в кино.

    Завышенные ожидания — это причина, по которой мы в жизни, ведь автоматический робот-пылесос не сравнится с роботом-дворецким Тони Старка, а домашний и милый Zenbo не устроит вам «Мир Дикого Запада».

    Россия и применение искусственного интеллекта — есть кто живой?

    И хотя искусственный интеллект не оправдывает ожидания большинства, в России он используется в различных сферах, начиная от государственного управления и заканчивая дейтингом.

    Сегодня найти и идентифицировать объекты, проанализировав данные изображений, можно с помощью и ИИ. Выявить агрессивное поведение человека, обнаружить попытку взлома банкомата и распознать по видео личность того, кто это пытался сделать — уже можно.

    Биометрические технологии тоже ушли вперёд и позволяют не только по отпечаткам пальцев, но и по голосу, ДНК или сетчатке глаза. Да, прямо как в фильмах про спецагентов, которые могли попасть в секретное место лишь после сканирования глазного яблока. Но биометрические технологии применяются не только для верификации тайных агентов. В реальном мире биометрия используется для аутентификации, проверок заявок на кредит и контроля за работой персонала.

    Биометрия — не единственный пример применения. Искусственный интеллект тесно связан с другими технологиями и решает задачи ритейла, финтеха, образования, промышленности, логистики, туризма, маркетинга, медицины, строительства, спорта и экологии. Наиболее успешно в России ИИ используется для решения задач предиктивной аналитики, интеллектуального анализа данных, обработки естественного языка, речевых технологий, биометрии и компьютерного зрения.

    Задачи искусственного интеллекта и почему он ничего вам не должен

    Никакой миссии у искусственного интеллекта нет, а задачи перед ним ставятся с целью и сокращения ресурсов, будь это время, деньги или люди.

    Как пример — интеллектуальный анализ данных, где ИИ оптимизирует закупки, логистические цепочки и другие бизнес-процессы. Или компьютерное зрение, где с помощью технологий искусственного интеллекта проводится видеоаналитика и создаётся описание содержания видео. Для решения задач речевых технологий ИИ распознаёт, анализирует и синтезирует устную речь, делая ещё один маленький шаг на пути к тому, чтобы научить компьютер понимать человека.

    Понимание человека компьютером считают той самой миссией, выполнение которой приблизит нас к созданию сильного интеллекта, так как для распознавания естественного языка машине потребуются не только огромные знания о мире, но и постоянное взаимодействие с ним. Поэтому «верующие» в сильный искусственный интеллект относят понимание машиной человека к самой важной задаче ИИ.

    Гуманоид Надин имеет индивидуальность и предназначен на роль социального компаньона.

    В философии искусственного интеллекта даже существует гипотеза, согласно которой есть слабый и сильный искусственные интеллекты. В ней сильным интеллектом будет считаться компьютер, способный мыслить и осознавать себя. Теория слабого интеллекта такую возможность отвергает.

    К сильному интеллекту и правда много требований, некоторые из которых уже выполнены. Например, обучение и принятие решений. Но сможет ли когда-нибудь макбук соответствовать таким требованиям, как сопереживание и мудрость — большой вопрос.

    Возможно ли, что в будущем появятся роботы, которые смогут не только имитировать человеческое поведение, но и сочувственно кивать, слушая очередное недовольство несправедливостью человеческого бытия?

    Для чего ещё нужен робот с искусственным интеллектом?

    В России робототехнике с использованием искусственного интеллекта уделяется мало внимания, но надежда на то, что это временное явление есть. CEO Mail Group Дмитрий Гришин даже фонд Grishin Robotics, правда, о громких находках фонда пока не было слышно.

    Из последних хороших российских примеров — робот «Емеля» от i-Free, способный понимать естественный язык и общаться с детьми. На первом этапе робот запоминает имя и возраст ребенка, подстраиваясь под его возрастную группу. Также он может понимать вопросы и отвечать на них – например, говорить о прогнозе погоды или рассказать факты из «Википедии».

    В других странах роботы пользуются большей популярностью. Например, в китайской провинции Хэнань на вокзале для скоростных поездов служит настоящий , который может сканировать и распознавать лица пассажиров.

    Искусственный интеллект — это область науки, занимающаяся моделированием интеллектуальной деятельности человека. Зародившийся более 700 лет назад в средневековой Испании искусственный интеллект оформился в самостоятельную научную область в середине XX в.

    Методы искусственного интеллекта позволили создать эффективные компьютерные программы в самых разнообразных, ранее считавшихся недоступными для формализации и алгоритмизации, сферах человеческой деятельности, таких как медицина, биология, зоология, социология, культурология, политология, экономика, бизнес, криминалистика и т.п. Идеи обучения и самообучения компьютерных программ, накопления знаний, приемы обработки нечетких и неконкретных знаний позволили создать программы, творящие чудеса. Компьютеры успешно борются за звание чемпиона мира по шахматам, моделируют творческую деятельность человека, создавая музыкальные и поэтические произведения, распознают образы и сцены, распознают, понимают и обрабатывают речь, тексты на естественном человеческом языке. Нейрокомпьютеры, созданные по образу и подобию человеческого мозга, успешно справляются с управлением сложными техническими объектами, диагностикой заболеваний человека, неисправностей сложных технических устройств; предсказывают погоду и курсы валют, результаты голосований; выявляют хакеров и потенциальных банкротов; помогают абитуриентам правильно выбрать специальность и т.д.

    Мы уже привыкли к тому, что компьютеры «умнеют» буквально на глазах, а компьютерные программы становятся все более и более интеллектуальными. Само по себе понятие интеллекта постоянно претерпевает изменения по мере развития науки и человека. Давно уже не считаются интеллектуальными задачи, состоящие в выполнении арифметических операций сложения, умножения, деления. Не считается интеллектуальной задача интегрирования дифференциального уравнения, если для нее известен строго детерминированный алгоритм. В настоящее время принято считать интеллектуальными задачи, которые на современном этапе не поддаются алгоритмизации в традиционном смысле этого слова. Это задачи, для решения которых требуются манипуляции с нечеткими, неконкретными, ненадежными, расплывчатыми и даже нетрадиционными знаниями.

    Начнем рассмотрение положений ИИ с терминов и определений.

    Термин интеллект (intelligence) происходит от латинского intellectus — что означает ум, рассудок, разум; мыслительные способности человека. Соответственно искусственный интеллект (artificial intelligence) — ИИ (AI) обычно толкуется как свойство автоматических систем брать на себя отдельные функции интеллекта человека, например, выбирать и принимать оптимальные решения на основе ранее полученного опыта и рационального анализа внешних воздействий.

    Понятие «интеллект» используется сегодня и в технике, и в технических дисциплинах, которое отличается от определений, сформировавшихся в контексте психологических и философских исследований сознания. Под интеллектом будем понимать способность мышления предвидеть события, предвидеть результаты собственных действий, анализировать и оценивать свое состояние и окружающую обстановку и принимать решения, сообразуясь со своими представлениями об окружающем мире. Определение, данное академиком Н.Н. Моисеевым, рассматривает интеллектуальную деятельность с позиций информатики. Но оно и выделяет самое главное в интеллекте – это способность к отвлеченному мышлению, абстрагированию, благодаря которым и возникают самосознание и рефлексия.

    Итак, интеллект – это способность мозга решать (интеллектуальные) задачи путем приобретения, запоминания и целенаправленного преобразования знаний в процессе обучения на опыте и адаптации к разнообразным обстоятельствам.

    При этом под термином «знания» подразумевается не только та информацию, которая поступает в мозг через органы чувств. Такого типа знания чрезвычайно важны, но недостаточны для интеллектуальной деятельности. Дело в том, что объекты окружающей нас среды обладают свойством не только воздействовать на органы чувств, но и находиться друг с другом в определенных отношениях. Ясно, что для того, чтобы осуществлять в окружающей среде интеллектуальную деятельность (или хотя бы просто существовать), необходимо иметь в системе знаний модель этого мира. В этой информационной модели окружающей среды реальные объекты, их свойства и отношения между ними не только отображаются и запоминаются, но и, как это отмечено в данном определении интеллекта, могут мысленно «целенаправленно преобразовываться». При этом существенно то, что формирование модели внешней среды происходит «в процессе обучения на опыте и адаптации к разнообразным обстоятельствам».

    Интеллектуальная задача . Для того, чтобы пояснить, чем отличается интеллектуальная задача от просто задачи, необходимо ввести термин «алгоритм» — один из краеугольных терминов кибернетики.

    Под алгоритмом понимают точное предписание о выполнении в определенном порядке системы операций для решения любой задачи из некоторого данного класса (множества) задач. Термин «алгоритм» происходит от имени узбекского математика Аль-Хорезми, который еще в IX веке предложил простейшие арифметические алгоритмы. В математике и кибернетике класс задач определенного типа считается решенным, когда для ее решения установлен алгоритм. Нахождение алгоритмов является естественной целью человека при решении им разнообразных классов задач. Отыскание алгоритма для задач некоторого данного типа связано с тонкими и сложными рассуждениями, требующими большой изобретательности и высокой квалификации. Задачи, связанные с отысканием алгоритма решения класса задач определенного типа, будем называть интеллектуальными .

    Что же касается задач, алгоритмы решения которых уже установлены, то, как отмечает известный специалист в области ИИ М. Минский, «излишне приписывать им такое мистическое свойства, как «интеллектуальность»». В самом деле, после того, как такой алгоритм уже найден, процесс решения соответствующих задач становится таким, что его могут в точности выполнить человек, вычислительная машина (должным образом запрограммированная) или робот, не имеющие ни малейшего представления о сущность самой задачи. Требуется только, чтобы лицо, решающее задачу, было способно выполнять те элементарные операции, их которых складывается процесс, и, кроме того, чтобы оно педантично и аккуратно руководствовалось предложенным алгоритмом. Такое лицо, действуя, как говорят в таких случаях, чисто машинально, может успешно решать любую задачу рассматриваемого типа.

    Поэтому представляется совершенно естественным исключить их класса интеллектуальных такие задачи, для которых существуют стандартные методы решения. Примерами таких задач могут служить чисто вычислительные задачи: решение системы линейных алгебраических уравнений, численное интегрирование дифференциальных уравнений и т. д. Для решения подобного рода задач имеются стандартные алгоритмы, представляющие собой определенную последовательность элементарных операций, которая может быть легко реализована в виде программы для вычислительной машины. В противоположность этому для широкого класса интеллектуальных задач, таких, как распознавание образов, игра в шахматы, доказательство теорем и т.п., напротив это формальное разбиение процесса поиска решения на отдельные элементарные шаги часто оказывается весьма затруднительным, даже если само их решение несложно.

    Таким образом, можно перефразировать определение интеллекта как универсальный сверхалгоритм, который способен создавать алгоритмы решения конкретных задач.

    Еще интересным замечанием здесь является то, что профессия программиста, исходя из наших определений, является одной из самых интеллектуальных, поскольку продуктом деятельности программиста являются программы — алгоритмы в чистом виде. Именно поэтому, создание даже элементов ИИ должно очень сильно повысить производительность его труда.

    Деятельность мозга (обладающего интеллектом), направленную на решение интеллектуальных задач, будем называть мышлением, или интеллектуальной деятельностью . Интеллект и мышление органически связаны с решением таких задач, как доказательство теорем, логический анализ, распознавание ситуаций, планирование поведения, игры и управление в условиях неопределенности. Характерными чертами интеллекта, проявляющимися в процессе решения задач, являются способность к обучению, обобщению, накоплению опыта (знаний и навыков) и адаптации к изменяющимся условиям в процессе решения задач. Благодаря этим качествам интеллекта мозг может решать разнообразные задачи, а также легко перестраиваться с решения одной задачи на другую. Таким образом, мозг, наделенный интеллектом, является универсальным средством решения широкого круга задач (в том числе неформализованных) для которых нет стандартных, заранее известных методов решения.

    Следует иметь в виду, что существуют и другие, чисто поведенческие (функциональные) определения. Так, по А. Н. Колмогорову, любая материальная система, с которой можно достаточно долго обсуждать проблемы науки, литературы и искусства, обладает интеллектом. Другим примером поведенческой трактовки интеллекта может служить известное определение А. Тьюринга. Его смысл заключается в следующем. В разных комнатах находится люди и машина. Они не могут видеть друг друга, но имеют возможность обмениваться информацией (например, с помощью электронной почты). Если в процессе диалога между участниками игры людям не удается установить, что один из участников — машина, то такую машину можно считать обладающей интеллектом.

    Кстати интересен план имитации мышления, предложенный А. Тьюрингом. «Пытаясь имитировать интеллект взрослого человека, — пишет Тьюринг, — мы вынуждены много размышлять о том процессе, в результате которого человеческий мозг достиг своего настоящего состояния… Почему бы нам вместо того, чтобы пытаться создать программу, имитирующую интеллект взрослого человека, не попытаться создать программу, которая имитировала бы интеллект ребенка? Ведь если интеллект ребенка получает соответствующее воспитание, он становится интеллектом взрослого человека… Наш расчет состоит в том, что устройство, ему подобное, может быть легко запрограммировано… Таким образом, мы расчленим нашу проблему на две части: на задачу построения «программы-ребенка» и задачу «воспитания» этой программы».

    Забегая вперед, можно сказать, что именно этот путь используют практически все системы ИИ. Ведь понятно, что практически невозможно заложить все знания в достаточно сложную систему. Кроме того, только на этом пути проявятся перечисленные выше признаки интеллектуальной деятельности (накопление опыта, адаптация и т. д.).

    Термин «искусственный интеллект» введен в обиход в 1956 г. профессором Массачусетского технологического института Дж.Макарти на встрече американских специалистов в области наук, связанных с теорией и практикой исследования вычислительных процессов. На этой встрече в Дортмутском колледже, которую американцы считают первой конференцией по ИИ, были сформулированы две основные задачи в новой научно-технической отрасли: раскрыть механизм человеческого мышления и построить электронную машину, которая могла бы имитировать данный процесс .

    Единого определения, полностью описывающего эту научную область, не существует и по сей день. Среди многих точек зрения на нее сегодня доминируют три. Согласно первой — исследования в области ИИ являются фундаментальными исследованиями, в рамках которых разрабатываются модели и методы решения задач, традиционно считавшихся интеллектуальными и не поддававшихся ранее формализации и автоматизации. Согласно второй точке зрения, новое направление связано с новыми идеями решения задач на ЭВМ, с разработкой принципиально иной технологии программирования, с переходом к архитектуре ЭВМ, отвергающей классическую архитектуру, которая восходит еще к первым ЭВМ. Наконец, третья точка зрения, по-видимому, наиболее прагматическая, состоит в том, что в результате работ в области искусственного интеллекта рождается множество прикладных систем, решающих задачи, для которых ранее создаваемые системы были непригодны.

    Конечно, все эти три точки зрения взаимно связаны, в области ИИ развиваются фундаментальные исследования, новая технология программирования, новая архитектура технических средств, и все это используется для создания прикладных систем, предназначенных для работы в самых разнообразных областях.

    Под искусственным интеллектом будем понимать область научных исследований, в рамках которой разрабатываются модели, методы, технические и программные средства решения задач, традиционно считавшихся интеллектуальными и поддающимися формализации и автоматизации.

    Под интеллектуальными системами понимают любые биологические, искусственные или формальные системы, проявляющие способность к целенаправленному поведению. Последнее включает свойства (проявления) общения, накопления знаний, принятия решений, обучения, адаптации и т.д.

    Системами ИИ называют системы, предназначенные для выполнения на ЭВМ таких практических задач, которые называются интеллектуальными, если они выполняются людьми. В теории ИИ часто системы ИИ называют интеллектуальными системами.

    Еще одно определение понятия «интеллектуальная система» в ИИ предложено Поспеловым Д.А. Система считается интеллектуальной, если в ней реализованы следующие три базовые функции:

    1) Функция представления и обработки знаний. Интеллектуальная система должна быть способна накапливать знания об окружающем мире, классифицировать и оценивать их с точки зрения прагматики и непротиворечивости, инициировать процессы получения новых знаний, соотносить новые знания со знаниями, хранящимися в базе знаний.

    2) Функция рассуждения. Интеллектуальная система должна быть способна формировать новые знания с помощью логического вывода и механизмов выявления закономерностей в накопленных знаниях, получать обобщенные знания на основе частных знаний и логически планировать свою деятельность.

    3) Функция общения. Интеллектуальная система должна быть способна общаться с человеком на языке, близком к естественному (ЕЯ) и получать информацию через каналы, аналогичные тем, которые использует человек при восприятии окружающего мира, прежде всего зрительный и звуковой, уметь формировать «для себя» или по просьбе человека объяснения собственной деятельности, оказывать человеку помощь за счет знаний, которые хранятся в ее памяти, и логических средств рассуждения.

    Искусственный интеллект создал нейросеть December 15th, 2020

    Дожили до того момента, когда искусственный интеллект создаёт собственную нейросеть. Хотя многие думают, что это одно и тоже. Но на самом деле не всё так просто и сейчас мы попробуем разобраться что это такое и кто кого может создать.

    Инженеры из подразделения Google Brain весной текущего года продемонстрировали AutoML. Этот искусственный интеллект умеет без участия человека производить собственные уникальнейшие ИИ. Как выяснилось совсем недавно, AutoML смог впервые создать NASNet, систему компьютерного зрения. Данная технология серьёзно превосходит все созданные ранее людьми аналоги. Эта основанная на искусственном интеллекте система может стать отличной помощницей в развитии, скажем, автономных автомобилей. Применима она и в робототехнике — роботы смогут выйти на абсолютно новый уровень.

    Развитие AutoML проходит по уникальной обучающей системе с подкреплением. Речь идёт о нейросети-управленце, самостоятельно разрабатывающей абсолютно новые нейросети, предназначенные для тех или иных конкретных задач. В указанном нами случае AutoML имеет целью производство системы, максимально точно распознающей в реальном времени объекты в видеосюжете.

    Искусственный интеллект сам смог обучить новую нейронную сеть, следя за ошибками и корректируя работу. Обучающий процесс повторялся многократно (тысячи раз), до тех пор, пока система не оказалась годной к работе. Любопытно, что она смогла обойти любые аналогичные нейросети, имеющиеся в настоящее время, но разработанные и обученные человеком.

    При этом AutoML оценивает работу NASNеt и использует эту информацию для улучшения дочерней сети; этот процесс повторяется тысячи раз. Когда инженеры протестировали NASNet на наборах изображений ImageNet и COCO, она превзошла все существующие системы компьютерного зрения.

    В Google официально заявили, что NASNet распознаёт с точностью равной 82,7%. Результат на 1.2 % превышает прошлый рекорд, который в начале осени нынешнего года установили исследователи из фирмы Momenta и специалисты Оксфорда. NASNet на 4% эффективнее своих аналогов со средней точностью в 43,1%.

    Есть и упрощённый вариант NASNet, который адаптирован под мобильные платформы. Он превосходит аналоги чуть больше, чем на три процента. В скором будущем можно будет использовать данную систему для производства автономных автомобилей, для которых важно наличие компьютерного зрения. AutoML же продолжает производить новые потомственные нейросети, стремясь к покорению ещё больших высот.

    При этом, конечно, возникают этические вопросы, связанные с опасениями по поводу ИИ: что, если AutoML будет создавать системы с такой скоростью, что общество просто за ними не поспеет? Впрочем, многие крупные компании стараются учитывать проблемы безопасности ИИ. Например, Amazon, Facebook, Apple и некоторые другие корпорации являются членами Партнерства по развитию ИИ (Partnership on AI to Benefit People and Society). Институт инженеров и электротехники (IEE) же предложил этические стандарты для ИИ, а DeepMind, например, анонсировал создание группы, которая будет заниматься моральными и этическими вопросами, связанными с применениями искусственного интеллекта.

    Впрочем, многие крупные компании стараются учитывать проблемы безопасности ИИ. При этом, конечно, возникают этические вопросы, связанные с опасениями по поводу ИИ: что, если AutoML будет создавать системы с такой скоростью, что общество просто за ними не поспеет? Институт инженеров и электротехники (IEE) же предложил этические стандарты для ИИ, а DeepMind, например, анонсировал создание группы, которая будет заниматься моральными и этическими вопросами, связанными с применениями искусственного интеллекта. Например, Amazon, Facebook, Apple и некоторые другие корпорации являются членами Партнерства по развитию ИИ (Partnership on AI to Benefit People and Society).

    Что такое искусственный интеллект?

    Автором термина «искусственный интеллект» является Джон Маккарти, изобретатель языка Лисп, основоположник функционального программирования и лауреат премии Тьюринга за огромный вклад в области исследований искусственного интеллекта.
    Искусственный интеллект — это способ сделать компьютер, компьютер-контролируемого робота или программу способную также разумно мыслить как человек.

    Исследования в области ИИ осуществляются путем изучения умственных способностей человека, а затем полученные результаты этого исследования используются как основа для разработки интеллектуальных программ и систем.

    Что такое нейронная сеть?

    Идея нейросети заключается в том, чтобы собрать сложную структуру из очень простых элементов. Вряд ли можно считать разумным один-единственный участок мозга — а вот люди обычно на удивление неплохо проходят тест на IQ. Тем не менее до сих пор идею создания разума «из ничего» обычно высмеивали: шутке про тысячу обезьян с печатными машинками уже сотня лет, а при желании критику нейросетей можно найти даже у Цицерона, который ехидно предлагал до посинения подбрасывать в воздух жетоны с буквами, чтобы рано или поздно получился осмысленный текст. Однако в XXI веке оказалось, что классики ехидничали зря: именно армия обезьян с жетонами может при должном упорстве захватить мир.
    На самом деле нейросеть можно собрать даже из спичечных коробков: это просто набор нехитрых правил, по которым обрабатывается информация. «Искусственным нейроном», или перцептроном, называется не какой-то особый прибор, а всего лишь несколько арифметических действий.

    Работает перцептрон проще некуда: он получает несколько исходных чисел, умножает каждое на «ценность» этого числа (о ней чуть ниже), складывает и в зависимости от результата выдаёт 1 или -1. Например, мы фотографируем чистое поле и показываем нашему нейрону какую-нибудь точку на этой картинке — то есть посылаем ему в качестве двух сигналов случайные координаты. А затем спрашиваем: «Дорогой нейрон, здесь небо или земля?» — «Минус один, — отвечает болванчик, безмятежно разглядывая кучевое облако. — Ясно же, что земля».

    «Тыкать пальцем в небо» — это и есть основное занятие перцептрона. Никакой точности от него ждать не приходится: с тем же успехом можно подбросить монетку. Магия начинается на следующей стадии, которая называется машинным обучением. Мы ведь знаем правильный ответ — а значит, можем записать его в свою программу. Вот и получается, что за каждую неверную догадку перцептрон в буквальном смысле получает штраф, а за верную — премию: «ценность» входящих сигналов вырастает или уменьшается. После этого программа прогоняется уже по новой формуле. Рано или поздно нейрон неизбежно «поймёт», что земля на фотографии снизу, а небо сверху, — то есть попросту начнёт игнорировать сигнал от того канала, по которому ему передают x-координаты. Если такому умудрённому опытом роботу подсунуть другую фотографию, то линию горизонта он, может, и не найдёт, но верх с низом уже точно не перепутает.

    В реальной работе формулы немного сложнее, но принцип остаётся тем же. Перцептрон умеет выполнять только одну задачу: брать числа и раскладывать по двум стопкам. Самое интересное начинается тогда, когда таких элементов несколько, ведь входящие числа могут быть сигналами от других «кирпичиков»! Скажем, один нейрон будет пытаться отличить синие пиксели от зелёных, второй продолжит возиться с координатами, а третий попробует рассудить, у кого из этих двоих результаты ближе к истине. Если же натравить на синие пиксели сразу несколько нейронов и суммировать их результаты, то получится уже целый слой, в котором «лучшие ученики» будут получать дополнительные премии. Таким образом достаточно развесистая сеть может перелопатить целую гору данных и учесть при этом все свои ошибки.

    Нейронную сеть можно сделать с помощью спичечных коробков — тогда у вас в арсенале появится фокус, которым можно развлекать гостей на вечеринках. Редакция МирФ уже попробовала — и смиренно признаёт превосходство искусственного интеллекта. Давайте научим неразумную материю играть в игру «11 палочек». Правила просты: на столе лежит 11 спичек, и в каждый ход можно взять либо одну, либо две. Побеждает тот, кто взял последнюю. Как же играть в это против «компьютера»?

    Берём 10 коробков или стаканчиков. На каждом пишем номер от 2 до 11.

    Кладём в каждый коробок два камешка — чёрный и белый. Можно использовать любые предметы — лишь бы они отличались друг от друга. Всё — у нас есть сеть из десяти нейронов!

    Нейросеть всегда ходит первой. Для начала посмотрите, сколько осталось спичек, и возьмите коробок с таким номером. На первом ходу это будет коробок №11. Возьмите из нужного коробка любой камешек. Можно закрыть глаза или кинуть монетку, главное — действовать наугад.
    Если камень белый — нейросеть решает взять две спички. Если чёрный — одну. Положите камешек рядом с коробком, чтобы не забыть, какой именно «нейрон» принимал решение. После этого ходит человек — и так до тех пор, пока спички не закончатся.

    Ну а теперь начинается самое интересное: обучение. Если сеть выиграла партию, то её надо наградить: кинуть в те «нейроны», которые участвовали в этой партии, по одному дополнительному камешку того же цвета, который выпал во время игры. Если же сеть проиграла — возьмите последний использованный коробок и выньте оттуда неудачно сыгравший камень. Может оказаться, что коробок уже пустой, — тогда «последним» считается предыдущий походивший нейрон. Во время следующей партии, попав на пустой коробок, нейросеть автоматически сдастся.

    Вот и всё! Сыграйте так несколько партий. Сперва вы не заметите ничего подозрительного, но после каждого выигрыша сеть будет делать всё более и более удачные ходы — и где-то через десяток партий вы поймёте, что создали монстра, которого не в силах обыграть.

    Последние материалы раздела:

    Комплекс Гольджи представляет собой стопку дискообразных мембранных мешочков (цистерн), несколько расширенных ближе к краям, и связанную с ними.

    Глава I. Описание живущего в семье дворян-Иртеньевых пожилого-учителя, немца Карла Ивановича Мауера. Николенька Иртеньев (мальчик, от лица.

    Аппарат Гольджи — важная органелла, которая присутствует практически в каждой Пожалуй, единственными клетками, в которых отсутствует этот комплекс.

    Программируем искусственный интеллект. Искусственный интеллект: как и где изучать — отвечают эксперты. Главные задачи при проектировании искусственного интеллекта

    Основной вопрос перед разработчиком – какому языку отдать предпочтение для создания ИИ? Мы рассмотрим популярные языки, используемые для создания ИИ.

    Одно только лишь название «искусственный интеллект» может привести в ступор и навести немало страха как на обычного человека, так и заурядного программиста. Занятие действительно сложное, а красивые демонстрируемые примеры — это результат многотысячных строк кода. При всём этом создание ИИ может стать вполне реальной задачей, а в части случаев, даже несложной. Многие проекты требуют углублённых знаний ИИ, а также языков программирования.

    Родоначальником языков программирования, на которых начал создаваться искусственный интеллект стал LISP . ЛИСП отличается гибкостью использования и простотой расширения функционала. Благодаря наличию возможности быстрого прототипирования и установки макросов удалось сократить уйму времени, это принесло много пользы в отношении ИИ.

    LISP стал универсальным языком, который равно хорошо справляется с относительно тяжёлыми и лёгкими задачами. В нём устроена качественная и продвинутая система объектно-ориентированности , что и позволило занять одну из лидирующих позиций при разработке ИИ.

    Наибольшим достоинством языка является многофункциональность, среди прочих:

    • прозрачность использования и написания кода;
    • способность легко переносить программы;
    • лёгкое сопровождение проектов.

    Для новичков важным достоинством Java станет наличие многочисленных бесплатных уроков в сети. Обучение Java является максимально комфортным и удобным для большинства студентов и новичков.

    Среди особенностей языка стоит выделить:

    • простота выполнения отладки;
    • качественное взаимодействие клиентской и серверной системы ресурса;
    • лёгкость обращения с масштабными проектами.

    При создании проектов на Java пользователь сталкивается с более привлекательным и доступным интерфейсом, что всегда притягивает аудиторию.

    Prolog

    Данный вариант относится к интерактивным языкам, которые работают по символической системе. Он популярен для использования в отношении проектов, требующих высокие логические способности. Язык имеет мощную и удобную основу, она активно используется в отношении программирования non-численного типа . На основании Prolog`а часто создаются доказательства теорем, проводится взаимодействие с понятным человеческим языком, используется для создания систем экспертной оценки.

    Пролог относится к декларативным типам языка, которые используют формальное или образное «мышление ». Среди разработчиков ИИ приобрёл хорошую славу благодаря оптимальным обструкционным типам работы, встроенным алгоритмам анализа, недетерминизма и т.д. Всё в сумме можно описать так: Prolog — многофункциональная платформа для программирования ИИ.

    Python

    Активно применяется в программировании благодаря чистому синтаксису и логическому, строгому грамматическому построению программы. Немаловажную роль играет и удобный дизайн.

    В основе используются многочисленные структурные алгоритмы, бесчисленные фреймворки для отладки, оптимальным показателям взаимодействия низкого и высокого уровня написания кода. Все перечисленные достоинства обеспечивают должное влияние в сфере создания искусственного интеллекта.

    История развития ИИ

    Началом традиционного представления ИИ стал проект UNIMATE , который увидел мир в 1961 году . В ходе представления был впервые получен робот, который начал выпускаться в промышленных масштабах. Робот был задействован на линии производства в концерне «General Motors ». Для создания были задействованы Валь и переменные из среды ассемблера. Язык пришёлся по душе благодаря наличию простейших фраз, отражению команд на мониторе и наличию инструкций, не нуждающихся в дополнительных разъяснениях.

    Спустя 4 года (1965 год ) был запущен искусственный интеллект « Dendral ». Задача системы заключалась в выявлении молекулярной и атомной структуре соединений органического происхождения. Для написания был использован LISP .

    «Weizenbaum » в 1966 году запустил проект Элиза, который впервые предполагал проведение беседы с роботом. Самой известной моделью являлся «Доктор», который позволял отвечать на поставленные запросы в форме психотерапевта. Для реализации проекта потребовалось сопоставление нескольких образцов технического достижения своего времени. Впервые Элиза увидел мир на SPLIP, но для отработки списка запущен «Weizenbaum». Немногим позже проект переработан на другую платформу — LISP .

    Первым роботом мобильного типа стал «Шеки », в его основе также лежал ЛИСП. Логика конструктора была построена на решении поставленных задач и передвижения, для взаимодействия использовались подъёмы вверх и вниз, а также включение и выключение света. С помощью «Шеки » удавалось открывать, закрывать, передвигать и т.д. Робот даже был способен передвигаться со скоростью равной спокойной ходьбе человека — 5 км/ч.

    За последние 15 лет было представлено многочисленное количество изобретений: «Деннинг » (сторожевой робот), «Predator » (беспилотник), «АЙБО » (собака), «АСИМО » от Honda и многие другие. Тенденция идёт к развитию данного направления, чего и стоит ожидать в ближайшем и дальнем бедующем.

    Пока программисты могут зарабатывать программированием, то существующие ИИ это не ИИ, какой бы фантик на них не был бы навешен. Предлагаемый мной вариант может решить этот вопрос.

    В результате своих изысканий я перестал для себя использовать фразу «искусственный интеллект» как слишком неопределенную и пришел к другой формулировке: алгоритм самостоятельного обучения, исследования и применения найденных результатов для решения любых возможных к реализации задач.

    Что такое ИИ, об этом уже много было написано. Я ставлю вопрос по другому, не «что такое ИИ», а «зачем нужен ИИ». Мне он нужен, что бы заработать много денег, затем что бы компьютер выполнял за меня все, что я сам не хочу делать, после построить космический корабль и улететь к звездам.

    Вот и буду здесь описывать, как заставить компьютер выполнять наши желания. Если вы ожидаете здесь увидеть описание или упоминание, как работает сознание, что такое самосознание, что значит думать или рассуждать — то это не сюда. Думать — это не про компьютеры. Компьютеры рассчитывают, вычисляют и выполняют программы. Вот и подумаем, как сделать программу, способную рассчитать необходимую последовательность действий для реализации наших желаний.

    В каком виде в компьютер попадет наша задача — через клавиатуру, через микрофон, или с датчиков вживленных в мозг — это не важно, это дело вторичное. Если мы сможем компьютер заставить выполнять желания написанные текстом, то после мы можем поставить ему задачу, что бы он сделал программу, которая так же выполняет желания, но через микрофон. Анализ изображений так же лишний.

    Утверждать, что для того, что бы создаваемый ИИ мог распознавать изображения и звук, в него изначально должны быть включены такие алгоритмы, это все равно что утверждать, что всякий человек, который таковые создал, от рождения знали как работают такие программы.

    Сформулируем аксиомы:
    1. Все в мире можно посчитать по каким-нибудь правилам. (про погрешности позже)
    2. Расчет по правилу, это однозначная зависимость результата от исходных данных.
    3. Любые однозначные зависимости можно находить статистически.
    А теперь утверждения:
    4. Существует функция преобразования текстовых описаний в правила — что бы не нужно было искать уже давно найденные знания.
    5. Существует функция преобразования задач в решения (это исполнялка наших желаний).
    6. Правило прогнозирования произвольных данных включает в себя все остальные правила и функции.

    Переведем это на язык программиста:
    1. Все в мире можно посчитать по каким-нибудь алгоритмам.
    2. Алгоритм всегда при повторении исходных данных дает одинаковый результат.
    3. При наличии множества примеров исходных данных и к ним результатов, при бесконечном времени поиска можно найти все множество возможных алгоритмов, реализующих эту зависимость исходных данных и результата.
    4. Существует алгоритмы конвертации текстовых описаний в алгоритмы (или любых других информационных данных) — чтобы не искать потребные алгоритмы статистически, если их уже кто-то когда-то нашел и описал.
    5. Можно создать программу, которая будет исполнять наши желания, будь они в текстовом или голосовом виде, при условии, что эти желания реализуемы физически и в потребные рамки времени.
    6. Если умудриться создать программу, которая умеет прогнозировать и учиться прогнозированию по мере поступления новых данных, то по истечении бесконечного времени такая программа будет включать все возможные в нашем мире алгоритмы. Ну а при не бесконечном времени для практической пользы и с некоторой погрешностью ее можно заставить выполнять алгоритмы программы п.5 или любые другие.

    И еще, ИМХО:
    7. Другого способа полностью самостоятельного и независимого от человека обучения, кроме как поиска перебором правил и статистической проверки их на прогнозировании, не существует. И нужно только научиться использовать это свойство. Это свойство является частью работы мозга.

    Что нужно прогнозировать. В человеческий мозг от рождения начинает поступать поток информации — от глаз, ушей, тактильные и пр. И все решения принимаются им на основании ранее поступивших данных. По аналогии, делаем программу, у которой есть вход новой информации по одному байту — входной побайтовый поток. Все что поступило ранее, представляется в виде одного сплошного списка. От 0 до 255 будет поступать внешняя информация, и свыше 255 будем использовать как специальные управляющие маркеры. Т.е. вход позволяет записать скажем до 0xFFFF размерность числа. И именно этот поток, а точнее очередное добавляемое число информации и нужно научиться прогнозировать, на основании поступавших до этого данных. Т.е. программа должна пытаться угадать, какое будет добавлено следующее число.

    Мастер Йода рекомендует:  Как заполучить 60 лидов за сутки при помощи посадочной страницы и группы в LinkedIn

    Конечно возможны и другие варианты представления данных, но для целей, когда на вход поступают самые различные форматы, попросту туда по началу запихиваем различные html с описаниями, этот наиболее оптимальный. Хотя маркеры можно заменить на эскейп последовательности в целях оптимизации, но объяснять с ними менее удобно. (А так же, представим, что все в ASCII, а не UTF).

    Итак, сначала как и при рождении, пихаем туда все подряд интернет-страницы с описаниями и разделяем их маркером нового текста — — что бы этот черный ящик учился всему подряд. Маркеры я буду обозначать тегами, но подразумевается, что они просто какое-то уникальное число. По прошествии некоторого объема данных, начинаем манипулировать входящей информацией с помощью управляющих маркеров.

    Под прогнозированием я понимаю такой алгоритм, который знает не только какие закономерности уже были, но и ищет постоянно новые. И потому если на вход такой программе послать последовательность
    небосиние
    травазеленная
    потолок…
    , то он должен сообразить, что за маркером следует цвет от указанного ранее объекта, и на месте многоточия спрогнозирует наиболее вероятный цвет потолка.

    Мы ему несколько примеров повторили, что бы он понял которую функцию нужно применить в пределах этих тегов. А сам цвет, он конечно же не выдумать должен, а должен его уже знать самостоятельно изучив вычисляя закономерности на прогнозировании.

    Когда от алгоритма требуется ответ, то на вход последующих шагов подается то, что было прогнозом предыдущего шага. Типа автопрогнозирование (по аналогии со словом автокорреляция). И при этом отключаем функцию поиска новых последовательностей.

    Другой пример, можно после первого маркера указывать вопрос, а во втором ответ, и тогда будь этот алгоритм супер-мега-крутым, он должен начать давать ответы даже на самые сложные вопросы. Опять же, в пределах уже изученных фактов.

    Можно много придумать разных трюков с управляющими маркерами, поданными на вход прогнозирующего механизма, и получать любые желаемые функции. Если вам будет скучно читать про алгоритмическое обоснование этого свойства, то можно пролистать до следующих примеров с управляющими маркерами.

    Из чего состоит этот черный ящик. Во первых стоит упомянуть, что стопроцентного прогнозирования всегда и во всех ситуациях сделать не возможно. С другой стороны, если как результат всегда выдавать число ноль, то это то же будет прогнозом. Хоть и с абсолютно стопроцентной погрешностью. А теперь посчитаем, с какой вероятностью, за каким числом, какое дальше следует число. Для каждого числа определится наиболее вероятное следующее. Т.е. мы его сможем немножко спрогнозировать. Это первый шаг очень длинного пути.

    Однозначное отображение исходных данных на результат по алгоритму, это соответствует математическому определению слова функция , за исключением того, что к определению алгоритма не налагается определенность в количестве и размещении входных и выходных данных. Так же пример, пусть будет маленькая табличка: объект-цвет, в нее занесем множество строк: небо-синее, трава-зеленная, потолок-белый. Это получилась маленькая локальная функция однозначного отображения. И не важно, что в действительности не редко цвета не такие — там будут другие свои таблицы. И любая база данных, содержащая запомненные свойства чего-либо, является множеством функций, и отображает идентификаторы объектов на их свойства.

    Для упрощения, дальше во многих ситуациях, вместо термина алгоритм, я буду употреблять термин функция, типа однопараметрическая, если другого не указано. И всякие такие упоминания, нужно в голове подразумевать расширяемость до алгоритмов.

    И описание буду давать примерное, т.к. в реальности реализовать все это я пока… Но оно все логично. А так же следует учитывать, что все расчеты ведутся коэффициентами, а не истина или ложь. (возможно даже если явно указано что истина и ложь).

    Любой алгоритм, в особенности который оперирует целыми числами, может быть разложен на множество условий и переходов между ними. Операции сложения, умножения, и пр. так же раскладываются на подалгоритмики из условий и переходов. И еще оператор результата. Это не оператор возврата. Оператор условия берет откуда-то значение и сравнивает его с константным. А оператор результата складывает куда-нибудь константное значение. Расположение взятия или складывания вычисляется относительно либо базовой точки, либо относительно прежних шагов алгоритма.

    Struct t_node < int type; // 0 - условие, 1 - результат union < struct < // оператор условия t_node* source_get; t_value* compare_value; t_node* next_if_then; t_node* next_if_else; >; struct < // оператор результата t_node* dest_set; t_value* result_value; >; > >;
    На вскидку, что то вроде этого. И из таких элементов и строится алгоритм. В результате всех рассуждений получится более сложная структура, а эта для начального представления.

    Каждая прогнозируемая точка рассчитывается по какой-то функции. К функции прилагается условие, которое тестирует на применимость этой функции к этой точке. Общая сцепка возвращает, либо ложь — не применимость, либо результат расчета функции. А непрерывное прогнозирование потока, это поочередная проверка применимости всех уже придуманных функции и их расчет, если истина. И так для каждой точки.

    Кроме условия на применимость, есть еще дистанции. Между исходными данными, и результатными, и эта дистанция бывает различной, при одной и той же функции, применяемой в зависимости от условия. (И от условия до исходной или прогнозируемой то же есть дистанция, ее будем подразумевать, но опускать при объяснениях. И дистанции бывают динамическими).

    При накоплении большого числа функций, будет возрастать количество условий, тестирующих применимость этих функций. Но, эти условия во многих случаях возможно располагать в виде деревьев, и отсечение множеств функций будет происходить пропорционально логарифмической зависимости.

    Когда идет начальное создание и замер функции, то вместо оператора результата, идет накопление распределения фактических результатов. После накопления статистики, распределение заменяем на наиболее вероятный результат, и функцию предваряем условием, так же протестировав условие на максимальность вероятности результата.

    Это идет поиск одиночных фактов корреляции. Накопив кучу таких одиночных, пытаемся объединить их в группы. Смотрим, из которых можно выделить общее условие и общую дистанцию от исходного значения к результату. А так же, проверяем, что при таких условиях и дистанциях, в других случаях, где идет повторение исходного значения, не идет широкое распределение результатного. Т.е. в известных частых употреблениях, оно высокотождественно.

    Коэффициент тождественности. (Здесь двунаправленная тождественность. Но чаще она однонаправленная. Позже переобдумаю формулу.)
    Количество каждой пары XY в квадрат и суммируем.
    Делим на: сумма количеств в квадрате каждого значения X плюс сумма количеств в квадрате Y минус делимое.
    Т.е. SUM(XY^2) / (SUM(X^2) + SUM(Y^2) — SUM(XY^2)).
    Этот коэффициент от 0 до 1.

    И в результате, что происходит. Мы на высокочастотных фактах убедились, что при этих условии и дистанции, эти факты однозначны. А остальные редковстречаемые — но суммарно таких будет гораздо больше чем частых — имеют ту же погрешность, что и частовстреченные факты в этих условиях. Т.е. мы можем накапливать базу прогнозирования на единично встречаемых фактах в этих условиях.

    Да будет база знаний. Небо часто синее, а тропическая-редкая-фигня где-то увидели что она серо-буро-малиновая. И запомнили, т.к. правило мы проверили — оно надежное. И принцип не зависит от языка, будь то китайский или инопланетный. А позже, после понимания правил переводов, можно будет сообразить, что одна функция может собираться из разных языков. При этом нужно учесть, что базу знаний так же можно представить в виде алгоритмов — если исходное значение такое-то, то результатное такое-то.

    Дальше, мы в следствии перебора других правил, находим, что при других расположении и условии, возникает уже виденная тождественность. Причем теперь нам не обязательно набирать большую базу для подтверждения тождественности, достаточно набрать десяток единичных фактов, и увидеть, что в пределах этого десятка, отображение происходит в те же значения, как и у прежней функции. Т.е. та же функция используется в других условиях. Это свойство образует то, что мы в описании разными выражениями можем описывать одно и то же свойство. А порой их просто перечислять в таблицах на интернет-страницах. И дальше, сбор фактов по этой функции можно производить уже по нескольким вариантам использования.

    Происходит накопление возможных различных условий и расположений относительно функций, и на них так же можно пытаться находить закономерности. Не редко, правила выборки подобны для различных функций, отличаясь только каким-нибудь признаком (например слово идентифицирующее свойство или заголовок в таблице).

    В общем понаходили мы кучку однопараметрических функций. А теперь, как при образовании из одиночных фактов в однопараметрические, так же и здесь, попытаемся сгруппировать однопараметрические по части условия и части дистанции. Та часть, что общая — новое условие, а та, что различается — это второй параметр новой функции — двухпараметрической, где первым параметром будет параметр однопараметрической.

    Получается, что каждый новый параметр у многопараметрических находится с той же линейностью, что и образование из единичных фактов в однопараметрические (ну или почти с той же). Т.е. нахождение N-параметрической пропорционально N. Что в стремлении к очень много параметрам становится почти нейронной сеткой. (Кто захочет, тот поймет.)

    Конечно замечательно, когда нам предоставили множество корреспондирующих примеров, скажем маленьких текстов перевода с русского на английский. И можно начинать пытаться находить между ними закономерности. Но в действительности, оно все перемешано во входном потоке информации.

    Вот мы взяли нашли одну какую-то функцию, и путь между данными. Вторую и третью. Теперь смотрим, можем ли среди них, у каких-либо найти у путей общую часть. Попытаться найти структуры X-P1-(P2)-P3-Y. А потом, найти еще другие подобные структуры, с подобными X-P1 и P3-Y, но различающимися P2. И тогда мы можем заключить, что имеем дело со сложной структурой, между которыми существуют зависимости. А множество найденных правил, за вычетом серединной части, объединим в групп и назовем конвертационной функцией. Таким образом образуются функции перевода, компиляции, и прочие сложные сущности.

    Вот возьмите лист с русским текстом, и с его переводом на незнакомый язык. Без самоучителя чрезвычайно сложно из этих листов найти понимание правил перевода. Но это возможно. И примерно так же, как это делали бы вы, это нужно оформить в поисковый алгоритм.

    Когда разберусь с простыми функциями, тогда и буду дальше обмусоливать конвертационный поиск, пока сойдет и набросок, и понимание что это то же возможно.

    Кроме статистического поиска функций, еще можно их формировать из описаний, посредством конвертационной функции в правила — читающая функция. Статистику для изначального создания читающей функции можно в избытке найти в интернете в учебниках — корреляции между описаниями и правилами примененными к примерам в тех описаниях. Т.е. получается, что алгоритм поиска должен одинаково видеть и исходные данные, и правила примененные к ним, т.е. все должно располагаться в неком однородном по типам доступов графе данных. Из такого же принципа только обратном, могут находиться правила для обратной конвертации внутренних правил во внешние описания или внешние программы. А так же формировать понимание системы, что она знает, а чего нет — можно перед затребованием ответа, поинтересоваться, а знает ли система ответ — да или нет.

    Функции о которых я говорил, на самом деле не просто находимый единый кусок алгоритма, а могут состоять из последовательности других функций. Что в свою очередь не вызов процедуры, а последовательность преобразований, типа как в linux работа с pipe. Для примера, я грубо описывал прогнозирование сразу слов и фраз. Но что бы получить прогноз только символа, к этой фразе нужно применить функцию взятия этого одного символа. Или функция научилась понимать задачи на английском, а ТЗ на русском. Тогда РусскоеТЗ->ПеревестиНаАнглийский->ВыполнитьТЗнаАнглийском->Результат.

    Функции могут быть не фиксированными в определении, и доопределяться или переопределяться по мере поступления дополнительной информации или при вообще изменении условий — функция перевода не конечная, и к тому же может меняться со временем.

    Так же на оценку вероятностей влияет повторяемость одного множества в разных функциях — образует или подтверждает типы.

    Так же нужно упомянуть, что не мало множеств реального мира, а не интернет-страниц, являются упорядоченными и возможно непрерывными, или с прочими характеристиками множеств, что как-то то же улучшает расчеты вероятностей.

    Кроме непосредственного замера найденного правила на примерах, предполагаю существование других способов оценки, что то типа классификатора правил. А возможно и классификатора этих классификаторов.

    Еще нюансы. Прогнозирование состоит из двух уровней. Уровень найденных правил и уровень поиска новых правил. Но поиск новых правил по сути то же программа со своими критериями. И допускаю (хотя пока не продумывал), что может быть все проще. Что нужен нулевой уровень, который будет искать возможные алгоритмы поиска во всем их многообразии, которые уже в свою очередь будут создавать конечные правила. А может быть это вообще многоуровневая рекурсия или фрактал.

    Вернемся к управляющим маркерам. В результате всех этих рассуждений про алгоритм получается, что через них мы запрашиваем от этого черного ящика продолжить последовательность, и выдать расчет по функции определяемой по подобию. Типа сделать так, как было показано до этого.

    Есть другой способ определения функции в этом механизме — выдать функцию через определение. Например:
    Перевести на английский

    стол table
    Ответить на вопрос

    цвет неба синий
    Создать программу по ТЗ

    хочу искусственный интеллект .

    Использование этой системы для решения наших задач состоит в следующем алгоритме. Делаем описание определения специального идентификатора для описания задач. Потом, создаем описание задачи и присваиваем ей новый идентификатор. Делаем описание допустимых действий. К примеру (хоть и не практично) непосредственно команды процессора — описания из интернета, а к компьютеру подключены манипуляторы, которыми через порты можно управлять. И после, мы у системы можем спрашивать, какое нужно выполнить следующее действие, для приближения задачи к решению, ссылаясь на задачу по идентификатору. А так же через раз спрашивать, не нужно ли какой дополнительно информации необходимой для дальнейшего расчета действий — информации по общим знаниям или по текущему состоянию решения задачи. И зацикливаем запросы действий и запросы информации в какой-нибудь внешний цикл. Вся эта схема строится на текстовых определениях, и потому может быть запущена посредством функций получаемых по определению. А выход — только лишь команды — отпадает вопрос многовероятности текстов. Вопрос масштабов необходимого прогнозирования сейчас не обсуждается — если будет необходимый и достаточный функционал прогнозирования — по логике оно должно работать.

    Если кто в ИИ видит не способ решения задач, а какие-либо характеристики человека, то можно сказать, что человеческое поведение и качества так же являются расчетными и прогнозируемыми. И в литературе есть достаточно описаний того или иного свойства. И потому, если в системе мы опишем, которое из свойств хотим, то она в меру знаний будет его эмулировать. И будет воспроизводить либо абстрактное усредненное поведение, либо со ссылкой на конкретную личность. Ну или если хотите, можно попробовать запустить сверхразум — если дадите этому определение.

    Прогнозировать можно что-то, что происходит по истечению какого-то времени. Объекты движутся со скоростями и ускорениями, и всякие другие возможные изменения чего-либо со временем. Прогнозировать можно и пространство. Для примера, вы заходите в незнакомую комнату, в которой стоит стол, у которого один из углов накрыт листом бумаги. Вы это угол не видите, но мыслено можете спрогнозировать, что он вероятней всего такой же прямоугольный, как и другие углы (а не закругленный), и цвет этого угла такой же как и у других углов. Конечно, прогнозирование пространства происходит с погрешностями — вдруг тот угол стола обгрызенный, и на нем пятно краски. Но и прогнозирование временных процессов тоже всегда с погрешностями. Ускорение свободного падения на земле не всегда 9.81, а зависит от высоты над уровнем моря, и от рядом стоящих гор. И измерительные приборы вы никогда не сможете сделать абсолютно точными. Т.е. прогнозирование пространства и процессов во времени всегда происходит с погрешностями, и у различных прогнозируемых сущностей различные погрешности. Но суть одинакова — алгоритмы, находимые статистически.

    Получается, что прогнозирование нашего байтового потока, это вроде прогнозирование пространства информации. В нем кодируются и пространство и время. Вот встречается там какая-то структура — пусть будет кусок программы. Этот кусок программы — это прогнозируемое пространство, такое же как и стол. Набор правил прогнозирования этой структуры образуют правила этой структуры — что-то вроде регулярных выражений. Для определения структуры этих структур вычисляется прогнозирование не одиночного значения, а множества допустимых значений. На момент описания алгоритма, про отдельность роли структур в нем я еще не осознавал, и потому туда это не попало. Но добавив это свойство, образуется полное понимание картинки, и со временем попробую переписать. Учтите, что под структурами подразумеваются условно расширяемые — если такое-то свойство имеет такое-то значение, значит добавляется еще пачка свойств.

    В целом, все что возможно в нашем мире, описывается типами, структурами, конвертациями и процессами. И все эти свойства подчиняются правилам, которые находятся в результате прогнозирования. Мозг делает тоже самое, только не точными методами, т.к. он аналоговое устройство.

    Будет ли он искать исследования целенаправленно без постановки такой задачи? Нет, потому что у него нету собственных желаний, а только поставленные задачи. То, что у нас отвечает за реализацию собственных желаний и интересов, это у нас называется личность. Можно и у компьютера запрограммировать личность. И будет ли она подобна человеческой, или какой-то компьютерный аналог — но это все равно останется всего лишь поставленной задачей.

    А наша творческая деятельность в искусстве, это те же исследования, только ищутся сущности, затрагивающие наши эмоции, чувства и разум.

    Окончательной инструкции по изготовлению такой программы пока нету. Вопросов остается много, и про сам алгоритм, и про использование (и про многовариантность текстов). Со временем буду дальше уточнять и детализировать описание.

    Альтернативным направлением реализации прогнозирования является использование рекуррентных нейронных сетей (скажем сеть Элмана). В этом направлении не нужно задумываться о природе прогнозирования, но там множество своих трудностей и нюансов. Но если это направление реализовать, то остальное использование остается прежним.

    Выводы по статье:
    1. Прогнозирование является способом находить все возможные алгоритмы.
    2. С помощью манипуляции входом прогнозирования можно эти алгоритмы от туда вытаскивать.
    3. Это свойство можно использовать, что бы разговаривать с компьютером.
    4. Это свойство можно использовать, что бы решать любые задачи.
    5. ИИ будет тем, как вы его определите, и после определения его можно решить как задачу.

    Некоторые скажут, что брутфорсом найти какую-либо закономерность будет чрезмерно долго. В противовес этому могу сказать, что ребенок учится говорить несколько лет. Сколько вариантов мы сможем просчитать за несколько лет? Найденные и готовые правила применяются быстро, и для компьютеров гораздо быстрей чем у человека. А вот поиск новых и там и там долго, но будет ли компьютер дольше человека, этого мы не узнаем, пока не сделаем такой алгоритм. Так же, замечу, что брутфорс великолепно распараллеливается, и найдутся миллионы энтузиастов, которые включат свои домашние ПК для этой цели. И получиться, что эти несколько лет, еще можно поделить на миллион. А найденные правила другими компьютерами будут изучаться моментально, в отличие от аналогичного процесса у человека.

    Другие начнут утверждать, что в мозге биллионы клеток нацеленных на распараллеливание. Тогда вопрос, каким образом задействуются эти биллионы при попытке без учебника на примерах изучить иностранный язык? Человек будет долго сидеть над распечатками и выписывать коррелирующие слова. В то же время, один компьютер это будет пачками делать за доли секунды.

    И анализ изображений — двинте десяток бильярдных шаров и посчитайте сколько будет столкновений. (закрывшись от звука). А два десятка или три… И причем здесь биллионы клеток?

    В общем, быстродействие мозга и его многопараллельность — это очень спорный вопрос.

    Когда вы думаете о создании думающего компьютера, вы копируете в него то, чему человек научился в течении жизни, и не пытаетесь понять, а каковы механизмы, позволяющие это накопить от стартовой программы — пожрать и поспать. И эти механизмы основываются отнюдь не на аксиомах формальной логики. Но на математике и статистике.

    PPS: мое мнение, что научного определения термина «Искусственный интеллект» не существует. Существует только научно-фантастическое. А если нужна реальность, то см. п.5 в выводах по статье.

    PPPS: Я много разных интерпретаций понял гораздо позже уже после написания статьи. Скажем, что поиск зависимости вопрос-ответ является аппроксимацией. Или каковы более точные научные определения вытаскивания нужной функции из многообразия найденных в процессе поиска функций прогнозирования. На каждый маленький момент понимания нельзя написать отдельную статью, а на все в общем нельзя, потому что не объединить в один заголовок. И все эти понимания, дают ответ, как получать от компьютерных вычислительных мощностей ответы на задаваемые вопросы, ответы на которые не всегда можно прочитать в существующих описаниях, как скажем для проекта Watson. Как создать программу, которая по одному упоминанию, или движению пальца, пытается понять и сделать то, что от нее хотят.

    Когда нибудь такая программа будет сделана. И назовут ее очередным гаджетом. А не ИИ.

    ****
    Исходники по этой теме, а так же дальнейшее развитие представления можете найти на сайте

    «Хочу заниматься ИИ. Что стоит изучить? Какие языки использовать? В каких организациях учиться и работать?»

    Мы обратились за разъяснением к нашим экспертам, а полученные ответы представляем вашему вниманию.

    Это зависит от Вашей базовой подготовки. Прежде всего, необходима математическая культура (знание статистики, теории вероятностей, дискретной математики, линейной алгебры, анализа и др.) и готовность многому быстро учиться. При реализации методов ИИ потребуется программирование (алгоритмы, структуры данных, ООП и др.).

    Разные проекты требуют владения разными языками программирования. Я бы рекомендовал знать как минимум Python, Java и любой функциональный язык. Нелишним будет опыт работы с различными базами данных и распределёнными системами. Чтобы быстро изучать лучшие подходы, применяемые в индустрии, требуется знание английского языка.

    Учиться рекомендую в хороших российских вузах! Например, в МФТИ, МГУ, ВШЭ есть соответствующие кафедры. Большое разнообразие тематических курсов доступно на Coursera, edX, Udacity, Udemy и других MOOC площадках. Некоторые ведущие организации имеют собственные программы подготовки в области ИИ (например, Школа анализа данных у Яндекса).

    Прикладные задачи, решаемые методами ИИ, можно найти в самых разнообразных местах. Банки, финансовый сектор, консалтинг, ритейл, e-commerce, поисковые системы, почтовые сервисы, игровая индустрия, индустрия систем безопасности и, конечно, Avito — все нуждаются в специалистах различной квалификации.

    У нас есть проект по финтеху, связанный с машинным обучением и компьютерным зрением, в котором первый его разработчик писал все на C++, далее пришел разработчик, который все переписал на Python. Так что язык тут не самое главное, так как язык — это прежде всего инструмент, и от вас зависит, как его использовать. Просто на каких-то языках задачи решать быстрее, а на других более медленно.

    Где учиться, сказать сложно — все наши ребята учились сами, благо есть интернет и Google.

    Могу посоветовать с самого начала готовить себя к тому, что учиться придётся много. Вне зависимости от того, что подразумевается под «заниматься ИИ» — работа с большими данными либо нейросети; развитие технологии или поддержка и обучение некой определённой уже разработанной системы.

    Давайте ради конкретики возьмём трендовую профессию Data Scientist. Что делает этот человек? В общем и целом — собирает, анализирует и готовит к употреблению большие данные. Именно те, на которых растёт и тренируется ИИ. А что должен знать и уметь Data Scientist? Статический анализ и математическое моделирование – по умолчанию, причём на уровне свободного владения. Языки – скажем, R, SAS, Python. Также хорошо бы иметь какой-никакой опыт разработки. Ну и, вообще говоря, хороший дата-сайнтист должен уверенно себя чувствовать в БД, алгоритмике, визуализации данных.

    Не сказать, чтобы такой набор знаний можно было получить в каждом втором техническом вузе страны. Крупные компании, у которых в приоритете разработка ИИ, это понимают и разрабатывают под себя соответствующие учебные программы — существует, например, Школа анализа данных от Яндекса. Но вы должны отдавать себе отчёт, что это не тот масштаб, где ты приходишь на курсы «с улицы», а выходишь с них готовым джуниором. Пласт большой, и идти учиться по дисциплине имеет смысл тогда, когда уже охвачена база (математика, статистика) хотя бы в рамках вузовской программы.

    Да, времени уйдёт порядочно. Но игра стоит свеч, потому что хороший Data Scientist – это очень перспективно. И очень дорого. Есть ещё и другой момент. Искусственный интеллект – это, с одной стороны, уже не просто объект ажиотажа, а вполне себе вышедшая на виток продуктивности технология. С другой стороны, ИИ всё ещё только развивается. Для этого развития требуется много ресурсов, много навыков и много денег. Пока это уровень высшей лиги. Я сейчас скажу очевидную вещь, но, если вы хотите оказаться на острие атаки и своими руками двигать прогресс, цельтесь в компании уровня Facebook или Amazon.

    В то же время в ряде областей технологию уже применяют: в банковской сфере, в телекоме, на промышленных предприятиях-гигантах, в ритейле. И там уже нужны люди, способные её поддерживать. Gartner прогнозирует, что к 2020 году 20% всех предприятий в развитых странах будут нанимать специальных сотрудников для тренировки нейронных сетей, используемых в этих компаниях. Так что пока ещё есть немного времени, чтобы подучиться самому.

    ИИ сейчас активно развивается, и предсказывать на десять лет вперед сложно. На ближайшие два-три года будут доминировать подходы на базе нейросетей и вычислений на основе GPU. Лидером в этой области является Python с интерактивной средой Jupyter и библиотеками numpy, scipy, tensorflow.

    Есть много онлайн-курсов, которые дают базовое представление об этих технологиях и общих принципах ИИ, например курс Andrew Ng. И в плане обучения этой теме сейчас в России эффективнее всего самостоятельное обучение или в локальной группе по интересам (например, в Москве я знаю о существовании как минимум пары групп, где люди делятся опытом и знаниями).

    На сегодняшний день самая быстро прогрессирующая часть искусственного интеллекта — это, пожалуй, нейронные сети.
    Изучение нейросетей и ИИ стоит начать с освоения двух разделов математики — линейной алгебры и теории вероятности. Это обязательный минимум, незыблемые столпы искусственного интеллекта. Абитуриентам, желающим постичь основы ИИ, при выборе вуза, на мой взгляд, стоит обратить внимание на факультеты с сильной математической школой.

    Следующий шаг — изучение проблематики вопроса. Существует огромное количество литературы, как учебной, так и специальной. Большинство публикаций по теме искусственного интеллекта и нейросетей написаны на английском языке, однако русскоязычные материалы тоже публикуются. Полезную литературу можно найти, например, в общедоступной цифровой библиотеке arxiv.org .

    Если говорить о направлениях деятельности, то здесь можно выделить обучение прикладных нейронных сетей и разработку совершенно новых вариантов нейросетей. Яркий пример: существует такая очень востребованная сейчас специальность — «дата-сайентист» (Data Scientist). Это разработчики, которые, как правило, занимаются изучением и подготовкой неких наборов данных для обучения нейросетей в конкретных, прикладных областях. Резюмируя, подчеркну, что каждая специализация требует отдельного пути подготовки.

    Прежде чем приступать к узкопрофильным курсам, нужно изучить линейную алгебру и статистику. Погружение в ИИ я бы посоветовал начать с учебника «Машинное обучение. Наука и искусство построения алгоритмов, которые извлекают знания из данных», это неплохое пособие для начинающих. На Coursera стоит послушать вводные лекции К. Воронцова (подчеркну, что они требуют хорошего знания линейной алгебры) и курс «Machine Learning» Стэнфордского университета, который читает Andrew Ng, профессор и глава Baidu AI Group/Google Brain.

    Основная масса пишется на Python, потом идут R, Lua.

    Если говорить об учебных заведениях, лучше поступить на курсы при кафедрах прикладной математики и информатики, подходящие образовательные программы есть. Для проверки своих способностей можно принять участие в соревнованиях Kaggle, где предлагают свои кейсы крупные мировые бренды.

    В любом деле, прежде чем приступать к проектам, хорошо бы получить теоретический базис. Есть много мест, где можно получить формальную степень магистра по этому направлению, либо повысить свою квалификацию. Так, например, Сколтех предлагает магистерские программы по направлениям «Computational Science and Engineering» и «Data Science», куда входит курсы «Machine Learning» и «Natural Language Processing». Можно также упомянуть Институт Интеллектуальных Кибернетических систем НИЯУ МИФИ, Факультет вычислительной математики и кибернетики МГУ и Кафедру «Интеллектуальные системы» МФТИ.

    Если же формальное образование уже имеется, есть ряд курсов на различных платформах MOOC. Так, например, EDx.org предлагает курсы по искусственному интеллекту от Microsoft и Колумбийского университета, последний из которых предлагает микро-магистерскую программу за умеренные деньги. Хотелось бы особо отметить, что обычно сами знания вы можете получить и бесплатно, оплата идет только за сертификат, если он нужен для вашего резюме.

    Если же вы хотите «глубоко погрузиться» в тему, ряд компаний в Москве предлагает недельные интенсивы с практическими занятиями, и даже предлагают оборудование для экспериментов (например, newprolab.com), правда, цена таких курсов от нескольких десятков тысяч рублей.

    Из компаний, которые занимаются разработкой Искусственного Интеллекта, вы наверняка знаете Яндекс и Сбербанк, но есть и многие другие разных размеров. Например, на этой неделе Минобороны открыло в Анапе Военный инновационный технополис ЭРА, одной из тем которого является разработка ИИ для военных нужд.

    Прежде чем изучать искусственный интеллект, надо решить принципиальный вопрос: красную таблетку взять или синюю.
    Красная таблетка — стать разработчиком и окунуться в жестокий мир статистических методов, алгоритмов и постоянного постижения непознанного. С другой стороны, не обязательно сразу кидаться в «кроличью нору»: можно стать управленцем и создавать ИИ, например, как менеджер проекта. Это два принципиально разных пути.

    Первый отлично подходит, если вы уже решили, что будете писать алгоритмы искусственного интеллекта. Тогда вам надо начать с самого популярного направления на сегодняшний день – машинного обучения. Для этого нужно знать классические статистические методы классификации, кластеризации и регрессии. Полезно будет также познакомиться с основными мерами оценки качества решения, их свойствами… и всем, что попадется вам по пути.

    Только после того, как база освоена, стоит проштудировать более специальные методы: деревья принятия решений и ансамбли из них. На этом этапе нужно глубоко погрузиться в основные способы построения и обучения моделей — они скрываются за едва приличными словами беггинг, бустинг, стекинг или блендинг.

    Тут же стоит познать методы контроля переобучения моделей (еще один «инг» — overfitting).

    И, наконец, совсем уж джедайский уровень — получение узкоспециальных знаний. Например, для глубокого обучения потребуется овладеть основными архитектурами и алгоритмами градиентного спуска. Если интересны задачи обработки естественного языка, то рекомендую изучить рекуррентные нейронные сети. А будущим создателям алгоритмов для обработки картинок и видео стоит хорошенько углубиться в свёрточные нейронные сети.

    Две последние упомянутые структуры — кирпичики популярных сегодня архитектур: состязательных сетей (GAN), реляционных сетей, комбинированных сетей. Поэтому изучить их будет нелишним, даже если вы не планируете учить компьютер видеть или слышать.

    Совсем другой подход к изучению ИИ — он же «синяя таблетка» — начинается с поиска себя. Искусственный интеллект рождает кучу задач и целых профессий: от руководителей ИИ-проектов до дата-инженеров, способных готовить данные, чистить их и строить масштабируемые, нагруженные и отказоустойчивые системы.

    Так что при «менеджерском» подходе сначала стоит оценить свои способности и бэкграунд, а уже потом выбирать, где и чему учиться. Например, даже без математического склада ума можно заниматься дизайном ИИ-интерфейсов и визуализациями для умных алгоритмов. Но приготовьтесь: уже через 5 лет искусственный интеллект начнет вас троллить и называть «гуманитарием».

    Основные методы ML реализованы в виде готовых библиотек, доступных к подключению на разных языках. Наиболее популярными языками в ML сегодня являются: C++, Python и R.

    Есть множество курсов как на русском, так и английском языках, таких как Школа анализа данных Яндекса, курсы SkillFactory и OTUS. Но прежде чем инвестировать время и деньги в специализированное обучение, думаю, стоит «проникнуться темой»: посмотреть открытые лекции на YouTube с конференций DataFest за прошлые годы, пройти бесплатные курсы от Coursera и «Хабрахабра».

    И когда все описанные знания будут усвоены, мы с нетерпением ждем юных падаванов к нам в команду Navicon, где поможем и научим, как подружиться с «искусственными интеллектуалами» в реальной жизни.

    Тема ИИ и машинного обучения стала значительно более демократичной, чем несколько лет назад.
    В интернете можно найти платные и бесплатные курсы на эту тему, инструменты становятся более простыми и менее требовательными как к знаниям, так и к аппаратному обеспечению.

    Как опытным, так и начинающим программистам рекомендую начать с онлайн-курсов на MOOC-площадках. Например, на Coursera есть отличная специализация «Машинное обучение и анализ данных» от Яндекса и Высшей школы экономики. Если нет проблем с пониманием лекций на английском языке, там же можно пройти курс Эндрю Ына «Machine Learning».

    Основные языки программирования для работы в области ИИ и машинного обучения — R и Python. Долгое время эти языки использовались в академических кругах и для них было создано большое количество библиотек. Сейчас развиваются инструменты, позволяющие быстро стартовать свой проект: Keras, TensorFlow, Theano, Caffe, scikit-learn. Последнее время Microsoft начал активно развивать свои инструменты: CNTK, ML.NET. Они позволяют создавать интеллектуальные решения на языке C#.

    Найти работу, не имея практического опыта в сфере анализа данных и машинного обучения, сейчас довольно сложно. Но можно обучаться самостоятельно на онлайн-курсах, участвовать в соревнованиях на Kaggle и подобных платформах. Это позволит наработать портфолио, которое станет вашим конкурентным преимуществом при поиске работы.

    Экспертам, а мы соберём на него ответы, если он окажется интересным. Вопросы, которые уже задавались, можно найти в списке выпусков . Если вы хотите присоединиться к числу экспертов и прислать ответ от вашей компании или лично от вас, то пишите на , мы расскажем как это сделать.

    На этой неделе вы могли прочитать крайне мотивирующей кейс от ученика GeekBrains , который изучил профессию , где он рассказал об одной из своих целей, которая привела в профессию — желанию познать принцип работы и научиться создавать самому игровых ботов.

    А ведь действительно, именно желание создать совершенный искусственный интеллект, будь то игровая модель или мобильная программа, сподвигла на путь программиста многих из нас. Проблема в том, что за тоннами учебного материала и суровой действительностью заказчиков, это самое желание было заменено простым стремлением к саморазвитию. Для тех, кто так и не приступил к исполнению детской мечты, далее краткий путеводитель по созданию настоящего искусственного разума.

    Стадия 1. Разочарование

    Когда мы говорим о создании хотя бы простых ботов, глаза наполняются блеском, а в голове мелькают сотни идей, что он должен уметь делать. Однако, когда дело доходит до реализации, оказывается, что ключом к разгадке реальной модели поведения является математика. Да-да, искусственный интеллект куда сложнее написания прикладных программ — одних знаний о проектировании ПО вам не хватит.

    Математика — этот тот научный плацдарм, на котором будет строиться ваше дальнейшее программирование. Без знания и понимания этой теории все задумки быстро разобьются о взаимодействие с человеком, ведь искусственный разум на самом деле не больше, чем набор формул.


    Стадия 2. Принятие

    Когда спесь немного сбита студенческой литературой, можно приступать к практике. Бросаться на LISP или другие пока не стоит — сначала стоит освоиться с принципами проектирования ИИ. Как для быстрого изучения, так и дальнейшего развития прекрасно подойдёт Python — это язык, чаще всего используемый в научных целях, для него вы найдете множество библиотек, которые облегчат ваш труд.

    Стадия 3. Развитие

    Теперь переходим непосредственно к теории ИИ. Их условно можно разделить на 3 категории:

    • Слабый ИИ – боты, которых мы видим в компьютерных играх, или простые подручные помощники, вроде Siri. Они или выполняют узкоспециализированные задачи или являются незначительным комплексом таковых, а любая непредсказуемость взаимодействия ставит их в тупик.
    • Сильный ИИ – это машины, интеллект которых сопоставим с человеческим мозгом. На сегодняшний день нет реальных представителей этого класса, но компьютеры, вроде Watson очень близки к достижению этой цели.
    • Совершенные ИИ – будущее, машинный мозг, который превзойдёт наши возможности. Именно об опасности таких разработок предупреждают Стивен Хоккинг, Элон Маск и кинофраншиза «Терминатор».

    Естественно, начинать следует с самых простых ботов. Для этого вспомните старую-добрую игру «Крестики-нолики» при использовании поля 3х3 и постарайтесь выяснить для себя основные алгоритмы действий: вероятность победы при безошибочных действиях, наиболее удачные места на поле для расположения фигуры, необходимость сводить игру к ничьей и так далее.

    Несколько десятков партий и анализируя собственные действия, вы наверняка сможете выделить все важные аспекты и переписать их в машинный код. Если нет, то продолжайте думать, а эта ссылка здесь полежит на всякий случай.

    К слову, если вы всё-таки взялись за язык Python, то создать довольно простого бота можно, обратившись к этому подробному мануалу . Для других языков, таких как C++ или Java , вам также не составит труда найти пошаговые материалы. Почувствовав, что за созданием ИИ нет ничего сверхъестественного, вы сможете смело закрыть браузер и приступить к личным экспериментам.

    Стадия 4. Азарт

    Теперь, когда дело сдвинулось с мёртвой точки, вам наверняка хочется создать что-то более серьёзное. В этом вам поможет ряд следующих ресурсов:

    Как вы поняли даже из названий, это API, которые позволят без лишних затрат времени создать некоторое подобие серьёзного ИИ.

    Стадия 5. Работа

    Теперь же, когда вы уже вполне ясно представляете, как ИИ создавать и чем при этом пользоваться, пора выводить свои знания на новый уровень. Во-первых, для этого потребуется изучение дисциплины, которое носит название «Машинное обучение ». Во-вторых, необходимо научиться работать с соответствующими библиотеками выбранного языка программирования. Для рассматриваемого нами Python это Scikit-learn, NLTK, SciPy, PyBrain и Numpy. В-третьих, в развитии никуда не обойтись от . Ну и самое главное, вы теперь сможете читать литературу о ИИ с полным пониманием дела:

    • Artificial Intelligence for Games , Ян Миллингтон;
    • Game Programming Patterns , Роберт Найсторм;
    • AI Algorithms, Data Structures, and Idioms in Prolog, Lisp, and Java , Джордж Люгер, Уильям Стбалфилд;
    • Computational Cognitive Neuroscience , Рэнделл О’Рейли, Юко Мунаката;
    • Artificial Intelligence: A Modern Approach , Стюарт Рассел, Питер Норвиг.

    И да, вся или почти вся литература по данной тематике представлена на иностранном языке, поэтому если хотите заниматься созданием ИИ профессионально — необходимо подтянуть свой английский до технического уровня. Впрочем, это актуально для любой сферы программирования, не правда ли?

    Понимающие язык машины были бы очень полезны. Но мы не знаем, как их построить.

    Об иллюстрациях к статье: одной из трудностей понимания языка компьютерами является то обстоятельство, что часто значение слов зависит от контекста и даже от внешнего вида букв и слов. В приведённых в статье изображениях несколько художников демонстрируют использование различных визуальных намёков, передающих смысловую нагрузку, выходящую за пределы непосредственно самих букв.

    В разгар напряжённой игры в го, шедшей в Сеуле в Южной Корее между Ли Седолем, одним из лучших игроков всех времен, и программой AlphaGo, ИИ, созданным в Google, программа сделала загадочный ход, продемонстрировавший её вызывающее оторопь превосходство над человеческим соперником.

    На 37-м ходу AlphaGo решила положить чёрный камень в странную на первый взгляд позицию. Всё шло к тому, что она должна была потерять существенный кусок территории – ошибка начинающего в игре, построенной на контроле за пространством на доске. Два телекомментатора рассуждали о том, правильно ли они поняли ход компьютера и не сломался ли он. Оказалось, что, несмотря на противоречие здравому смыслу, 37-й ход позволил AlphaGo построить труднопреодолимую структуру в центре доски. Программа от Google по сути выиграла игру при помощи хода, до которого не додумался бы ни один из людей.

    Впечатляет ещё и потому, что древнюю игру го часто рассматривали как проверку на интуитивный интеллект. Правила её просты. Два игрока по очереди кладут чёрные или белые камни на пересечения горизонтальных и вертикальных линий доски, пытаясь окружить камни противника и удалить их с доски. Но хорошо играть в неё невероятно сложно.

    Если шахматисты способны просчитывать игру на несколько шагов вперёд, в го это быстро становится невообразимо сложной задачей, кроме того, в игре не существует классических гамбитов. Также нет простого способа измерения преимущества, и даже для опытного игрока может быть сложно объяснить, почему он сделал именно такой ход. Из-за этого невозможно написать простой набор правил, которому бы следовала программа, играющая на уровне эксперта.

    AlphaGo не учили играть в го. Программа анализировала сотни тысяч игр и играла миллионы матчей сама с собой. Среди различных ИИ-техник, она использовала набирающий популярность метод, известный, как глубокое обучение. В его основе — математические вычисления, метод которых вдохновлен тем, как связанные между собой слои нейронов в мозгу активируются при обработке новой информации. Программа учила сама себя за многие часы практики, постепенно оттачивая интуитивное чувство стратегии. И то, что она затем смогла выиграть у одного из лучших игроков го в мире, является новой вехой в машинном интеллекте и ИИ.

    Через несколько часов после 37-го хода AlphaGo выиграла игру и стала лидировать со счётом 2:0 в матче из пяти игр. После этого Седоль стоял перед толпой журналистов и фотографов и вежливо извинялся за то, что подвёл человечество. «Я потерял дар речи»,- говорил он, моргая под очередями фотовспышек.

    Удивительный успех AlphaGo показывает, какой прогресс был достигнут в ИИ за последние несколько лет, после десятилетий отчаяния и проблем, описываемых, как «зима ИИ». Глубокое обучение позволяет машинам самостоятельно обучаться тому, как выполнять сложные задачи, решение которых ещё несколько лет назад нельзя было представить без участия человеческого интеллекта. Робомобили уже маячат на горизонте. В ближайшем будущем системы, основанные на глубоком обучении, будут помогать с диагностикой заболеваний и выдачей рекомендаций по лечению.

    Но несмотря на эти впечатляющие подвижки одна из основных возможностей никак не даётся ИИ: язык. Системы вроде Siri и IBM Watson могут распознавать простые устные и письменные команды и отвечать на простые вопросы, но они не в состоянии поддерживать разговор или на самом деле понимать используемые слова. Чтобы ИИ изменил наш мир, это должно поменяться.

    Хотя AlphaGo не разговаривает, в нём есть технология, способная дать лучшее понимание языка. В компаниях Google, Facebook, Amazon и в научных лабораториях исследователи пытаются решить эту упрямую проблему, используя те же инструменты ИИ – включая глубокое обучение – что отвечают за успех AlphaGo и возрождение ИИ. Их успех определит масштабы и свойства того, что уже начинает превращаться в революцию ИИ. Это определит наше будущее – появятся ли у нас машины, с которыми будет легко общаться, или системы с ИИ останутся загадочными чёрными ящиками, пусть и более автономными. «Никак не получится сотворить человекоподобную систему с ИИ, если в её основе не будет заложен язык,- говорит Джош Тененбаум , профессор когнитивных наук и вычислений из MIT. – Это одна из самых очевидных вещей, определяющих человеческий интеллект».

    Возможно, те же самые технологии, что позволили AlphaGo покорить го, позволят и компьютерам освоить язык, или же потребуется что-то ещё. Но без понимания языка влияние ИИ будет другим. Конечно, у нас всё равно будут нереально мощные и интеллектуальные программы вроде AlphaGo. Но наши отношения с ИИ будут не такими тесными, и, вероятно, не такими дружественными. «Самым главным вопросом с начала исследований было „Что, если бы вы получили устройства, интеллектуальные с точки зрения эффективности, но не похожие на нас с точки зрения отсутствия сочувствия тому, кто мы есть?“ – говорит Терри Виноград , заслуженный профессор Стэнфордского университета. „Можно представить машины, основанные не на человеческом интеллекте, работающие с большими данными и управляющие миром“.

    Говорящие с машинами

    Я начал с Винограда, живущего в пригороде на южном краю Стэнфордского кампуса в Пало-Альто, недалеко от штаб-квартир Google, Facebook и Apple. Его кудрявые седые волосы и густые усы придают ему вид почтенного учёного, и он заражает своим энтузиазмом.

    В 1968 Виноград сделал одну из ранних попыток научить машины разговаривать. Будучи математическим вундеркиндом, увлечённым языком, он приехал в новую лабораторию MIT по изучению ИИ получать учёную степень. Он решил создать программу, общающуюся с людьми через текстовый ввод на повседневном языке. В то время это не казалось такой дерзкой целью. В разработке ИИ были сделаны очень большие шаги и другие команды в MIT строили сложные системы компьютерного зрения и роботизированных манипуляторов. „Было чувство неизвестных и неограниченных возможностей“,- вспоминает он.

    Но не все считали, что язык так легко покорить. Некоторые критики, включая влиятельного лингвиста и профессора MIT Ноама Хомски, считали, что исследователям ИИ будет очень сложно научить машины пониманию, поскольку механика языка у людей была очень плохо изучена. Виноград вспоминает вечеринку, на которой студент Хомски отошёл от него после того, как услышал, что он работает в лаборатории ИИ.

    Но есть причины и для оптимизма. Джозеф Вейзенбаум , профессор MIT немецкого происхождения, пару лет назад сделал первую программу-чатбота. Её звали ELIZA и она была запрограммирована отвечать так, как психолог из мультиков, повторяя ключевые части утверждений или задавая вопросы, вдохновляющие на продолжение разговора. Если вы сообщали ей, что злитесь на мать, программа могла бы ответить „А что ещё приходит вам в голову, когда вы думаете о своей матери?“. Дешёвый трюк, который работал на удивление хорошо. Вейзенбаум был шокирован, когда некоторые испытуемые стали поверять свои тёмные секреты его машине.

    Виноград хотел сделать нечто, что могло бы убедительно делать вид, что понимает язык. Он начал с уменьшения области действия проблемы. Он создал простое виртуальное окружение, „блочный мир“, состоящий из набора вымышленных объектов на вымышленном столе. Затем он создал программу, назвав её SHRDLU, способную разобрать все существительные, глаголы и простые правила грамматики, необходимые для общения в этом упрощённом виртуальном мире. SHRDLU (бессмысленное слово, составленное из стоящих в ряд букв клавиатуры линотипа) могла описывать предметы, отвечать на вопросы об их взаимоотношениях и изменять блочный мир в ответ на вводимые команды. У неё даже была некая память и если вы просили её передвинуть „красный конус“, а затем писали про некий конус, она предполагала, что вы имеете в виду этот красный конус, а не какой-либо другой.

    SHRDLU стал знаменем того, что в области ИИ наметился огромный прогресс. Но это была всего лишь иллюзия. Когда Виноград попытался расширить блочный мир программы, правила, необходимые для учёта дополнительных слов и сложности грамматики стали неуправляемыми. Всего лишь через несколько лет он сдался и оставил область ИИ, сконцентрировавшись на других исследованиях. „Ограничения оказались гораздо сильнее, чем тогда казалось“,- говорит он.

    Виноград решил, что при помощи доступных в то время инструментов невозможно научить машину по-настоящему понимать язык. Проблема, по мнению Хьюберта Дрейфуса , профессора философии в Калифорнийском университете в Беркли, высказанному им в книге 1972 года „Чего компьютеры не могут“ , в том, что множество человеческих действий требуют инстинктивного понимания, которое невозможно задать набором простых правил. Именно поэтому до начала матча между Седолом и AlphaGo многие эксперты сомневались, что машины смогут овладеть игрой го.

    Но в то время, как Дрейфус доказывал свою точку зрения, несколько исследователей разрабатывали подход, который, в конце концов, даст машинам интеллект нужного вида. Вдохновляясь нейрологией, они экспериментировали с искусственными нейросетями – слоями математических симуляций нейронов, которые можно обучить активироваться в ответ на определённые входные данные. В начале эти системы работали невозможно медленно и подход был отвергнут как непрактичный для логики и рассуждений. Однако ключевой возможностью нейросетей была способность обучиться тому, что не было запрограммировано вручную, и позже она оказалась полезной для простых задач типа распознавания рукописного текста. Это умение нашло коммерческое применение в 1990-х для считывания чисел с чеков. Сторонники метода были уверены, что со временем нейросети позволят машинам делать гораздо больше. Они утверждали, что когда-нибудь эта технология поможет и распознавать язык.

    За последние несколько лет нейросети стали более сложными и мощными. Подход процветал благодаря ключевым математическим улучшениям, и, что более важно, более быстрому компьютерному железу и появлению огромного количества данных. К 2009 году исследователи из Университета Торонто показали, что многослойные сети глубокого обучения могут распознавать речь с рекордной точностью. А в 2012 году та же группа выиграла соревнование по машинному зрению, используя алгоритм глубокого обучения, показавший удивительную точность.

    Нейросеть глубокого обучения распознаёт объекты на картинках при помощи простого трюка. Слой симулируемых нейронов получает ввод в виде картинки и некоторые из нейронов активизируются в ответ на интенсивность отдельных пикселей. Результирующий сигнал проходит через множество слоёв связанных между собой нейронов перед тем, как достичь выходного слоя, сигнализирующего о наблюдении объекта. Математический приём под названием „обратное распространение“ используется для подгонки чувствительности нейронов сети для создания правильного ответа. Именно этот шаг и даёт системе возможность обучаться. Различные слои в сети откликаются на такие свойства, как края, цвета или текстура. Такие системы сегодня способны распознавать объекты, животных или лица с точностью, соперничающей с человеческой.

    С применением технологии глубокого обучения к языку есть очевидная проблема. Слова – это произвольные символы и этим они, по сути, отличаются от изображений. Два слова могут иметь схожее значение и содержать совершенно разные буквы. А одно и то же слово может означать разные вещи в зависимости от контекста.

    В 1980-х исследователи выдали хитрую идею превращения языка в такой тип проблемы, с которым нейросеть может справиться. Они показали, что слова можно представлять в виде математических векторов, что позволяет подсчитывать сходство связанных слов. К примеру, „лодка“ и „вода“ близки в векторном пространстве, хотя и выглядят по-разному. Исследователи из Монреальского университета под руководством Йошуа Бенджио и ещё одна группа из Google использовали эту идею для построения сетей, в которых каждое слово в предложении используется для построения более сложного представления. Джоффри Хинтон , профессор из Университета Торонто и видный исследователь глубокого обучения, работающий также и в Google, называет это „мысленным вектором“.

    Используя две таких сети, можно делать переводы с одного языка на другой с отличной точностью. А комбинируя эти типы сетей с той, что распознаёт объекты на картинках, можно получить удивительно точные субтитры.

    Смысл жизни

    Google уже обучает свои компьютеры основам языка. В мае компания обнародовала систему Parsey McParseface, способную распознавать синтаксис, существительные, глаголы и другие элементы текста. Несложно видеть, как понимание языка может помочь компании. Алгоритм поиска Google когда-то просто отслеживал ключевые слова и ссылки между веб-страницами. Теперь система RankBrain читает текст страниц, чтобы понять его смысл и улучшить результаты поиска. Ли хочет продвинуть эту идею ещё дальше. Адаптируя систему, оказавшуюся полезной для переводов и подписей картинок, они с коллегами создали Smart Reply, читающий содержимое писем на Gmail и предлагающую возможные ответы. Они также создали программу, обучившуюся на основе чата поддержки Google отвечать на простые технические вопросы.

    Недавно Ли создал программу, способную генерировать сносные ответы на непростые вопросы. Она тренировалась на диалогах из 18 900 фильмов. Некоторые ответы пугающе точно попадают в точку. К примеру, Ли спросил „В чём смысл жизни?“ и программа ответила „В служении высшему добру“. „Неплохой ответ,- вспоминает он с ухмылкой. – Возможно, лучше, чем я бы ответил сам“.

    Есть только одна проблема, которая становится очевидной при взгляде на большее количество ответов системы. Когда Ли спросил „Сколько ног у кошки?“, система ответила „Думаю, четыре“. Затем он спросил „Сколько ног у сороконожки?“ и получил странный ответ „Восемь“. По сути, программа Ли не понимает, о чём говорит. Она понимает, что некоторые комбинации символов сочетаются вместе, но не понимает реальный мир. Она не знает, как выглядит сороконожка, или как она двигается. Это всё ещё иллюзия интеллекта, без здравого смысла, который люди принимают, как само собой разумеющееся. Системы глубокого обучения в этом смысле довольно шаткие. Система от Google, создающая подписи к изображениям, иногда делает странные ошибки, к примеру, описывает дорожный знак как холодильник с едой.

    По странному совпадению, соседом Терри Винограда в Пало Альто оказался человек, который может помочь компьютерам лучше разобраться в реальном смысле слов. Фей-Фей Ли , директор Стэнфордской лаборатории искусственного интеллекта, была в декретном отпуске во время моего визита, но она пригласила меня домой и гордо представила мне своего трёхмесячного ребёнка, Финикс. „Обратите внимание, что на вас она смотрит больше, чем на меня,- сказала Ли, когда Финикс уставилась на меня. – Это потому что вы новый; это раннее распознавание лиц“.

    Большую часть своей карьеры Ли исследовала вопросы машинного обучения и компьютерного зрения. Несколько лет назад под её руководством была проведена попытка создания базы данных из миллионов изображений объектов, каждое из которых было подписано соответствующими ключевыми словами. Но Ли считает, что машинам необходимо более сложное понимание происходящего в мире и в этом году её команда выпустила другую базу данных с изображениями, аннотации к которым были гораздо богаче. К каждой картинке люди сделали десятки подписей: „Собака на скейте“, „У собаки густой развевающийся мех“, „Дорога с трещинками“ и так далее. Они надеются, что системы машинного обучения научатся понимать физический мир. „Языковая часть мозга получает очень много информации, в том числе и от визуальной системы,- говорит Ли. – Важной частью ИИ будет интеграция этих систем“.

    Этот процесс ближе к обучению детей, связывающих слова с объектами, взаимоотношениями и действиями. Но аналогия с обучением людей не заходит слишком далеко. Детишкам не нужно видеть собаку на скейте, чтобы представить её себе или описать словами. Ли верит, что сегодняшних инструментов для ИИ и машинного обучения не будет достаточно для того, чтобы создать настоящий ИИ. „Это не просто будет глубокое обучение с большим набором данных,- говорит она. – Мы, люди, очень плохо справляемся с подсчётами больших данных, но очень хорошо – с абстракциями и творчеством“.

    Никто не знает, как наделить машины этими человеческими качествами и возможно ли это вообще. Есть ли что-то исключительно человеческое в таких качествах, что не позволяет ИИ обладать ими?

    Специалисты по когнитивным наукам, например, Тененбаум из MIT, считают, что сегодняшним нейросетям не хватает критичных компонентов разума – вне зависимости от размера этих сетей. Люди способны относительно быстро обучаться на сравнительно малых объёмах данных, и у них есть встроенная возможность эффективного моделирования трёхмерного мира. „Язык построен на других возможностях, вероятно, лежащих более глубоко и присутствующих в младенцах ещё до того, как они начинают владеть языком: визуальное восприятие мира, работа с нашим двигательным аппаратом, понимание физики мира и намерений других существ“,- говорит Тененбаум.

    Если он прав, то без попыток симуляции человеческого процесса обучения, создания ментальных моделей и психологии будет очень сложно воссоздать понимание языка у ИИ.

    Объяснитесь

    Гудман со своими студентами разработали язык программирования Webppl, который можно использовать для наделения компьютеров вероятностным здравым смыслом, что при разговорах оказывается довольно важным. Одна экспериментальная версия умеет распознавать игру слов, а другая – гиперболы. Если ей сказать, что некоторым людям приходится проводить „вечность“ в ожидании столика в ресторане, она автоматически решит, что использование буквального значения этого слова в данном случае маловероятно и что люди, скорее всего, ждут довольно долго и раздражаются. Систему пока нельзя назвать истинным интеллектом, но она показывает, как новые подходы могут помочь ИИ-программам разговаривать чуть более жизненно.

    Также пример Гудмана показывает, как сложно будет научить машины языку. Понимание смысла понятия „вечность“ в определённом контексте – пример того, чему должны будут научиться ИИ-системы, при этом это на самом деле довольно простая и рудиментарная вещь.

    Тем не менее, несмотря на сложность и запутанность задачи, первоначальные успехи исследователей, использующих глубокое обучение для распознавания образов или игры в го, дают надежду, что мы находимся на пороге прорыва и в языковой области. В этом случае этот прорыв подоспел как раз вовремя. Если ИИ должен стать универсальным инструментом, помочь людям дополнить и усилить их собственный интеллект и выполнять задачи в режиме беспроблемного симбиоза, то язык является ключом к достижению этого состояния. Особенно если ИИ-системы будут всё больше использовать глубокое обучение и другие технологии для самопрограммирования.

    »В целом, системы глубокого обучения вызывают благоговейный трепет,- говорит Джон Леонард , профессор, изучающий робомобили в MIT. – С другой стороны, их работу довольно сложно понять».

    Компания Toyota, изучающая различные технологии автономного вождения, запустила в MIT исследовательский проект под руководством Джеральда Сассмана , эксперта по ИИ и языкам программирования, с целью разработки системы автономного вождения, способной объяснить, почему она в какой-то момент совершила то или иное действие. Очевидным способом дать такое объяснение был бы вербальный. «Создавать системы, сознающие свои знания – это очень сложная задача,- говорит Леонард, руководящий другим проектом Toyota в MIT. – Но, да, в идеале они должны дать не просто ответ, а объяснение».

    Через несколько недель после возвращения из Калифорнии я встретился с Дэвидом Сильвером , исследователем из отдела Google DeepMind и разработчиком AlphaGo. Он выступал с рассказом о матче против Седоля на научной конференции в Нью-Йорке. Сильвер объяснил, что когда программа во второй игре сделала свой решающий ход, его команда была удивлена не меньше остальных. Они лишь могли видеть, что AlphaGo предсказала шансы на выигрыш, и это предсказание мало менялось после 37-го хода. Только несколько дней спустя, тщательно проанализировав игру, команда сделала открытие: переварив предыдущие игры, программа подсчитала, что игрок-человек может сделать такой ход с вероятностью в 1 к 10 000. А её тренировочные игры показывали, что такой манёвр обеспечивает необычайно сильное позиционное преимущество.

    Так что, в каком-то смысле, машина знала, что этот ход ударит по слабому месту Седоля.

    Сильвер сказал, что в Google рассматривают несколько возможностей коммерциализации этой технологии, включая интеллектуальных ассистентов и инструменты для медицинского обслуживания. После лекции я спросил его о важности иметь возможность общаться с ИИ, управляющим подобными системами. «Интересный вопрос,- сказал он после паузы. – Для некоторых областей применения это может быть полезным. Например, в здравоохранении может быть важно знать, почему было принято конкретное решение».

    В самом деле, ИИ становятся всё более сложными и запутанными и очень сложно представить, как мы будем работать с ними без языка – без возможности спросить их, «Почему?». Более того, возможность с лёгкостью общаться с компьютерами сделало бы их более полезными и выглядело бы это волшебством. В конце концов, язык – это самый лучший из наших способов понимать мир и взаимодействовать с ним. Настало время машинам догонять нас.

    Как построить карьеру в ИИ, не будучи математическим гением

    Переучиваться всегда страшно, особенно когда на кону стоит материальный статус и вопрос профессиональной востребованности. Но оставаться в ИТ-индустрии в стороне от современных трендов — ИИ, машинного обучения, нейросетей и data science — все равно, что остановиться в своем развитии. Но айтишники в России не спешат менять специализацию. Декан факультета ИИ в онлайн-университете GeekUniversity Сергей Ширкин рассказал «Хайтеку» о самых распространенных страхах среди ИИ-программистов и о том, чему нужно учиться для построения успешной карьеры в этой области.

    Разработчикам сегодня интересно не просто писать стандартные программы, а быть на «передовой» — получать специализацию в наиболее перспективных сферах. ИИ, нейронные сети, машинное обучение, big data и data science, без сомнения, очень интересные направления в программировании, и это все понимают. Но чтобы стать высококлассным дата-сайентистом, новичку придется освоить с нуля большой объем разносторонних знаний. А состоявшемуся специалисту иного профиля, например, фронтенд-разработчику, основательно «перековаться». Практика показывает, что решиться на это не всегда просто. Мешают три главных страха, с которыми сталкивается практически каждый, кто задумал строить карьеру в области ИИ.

    Страх первый: я не смогу найти работу с достойной зарплатой

    Этот вопрос особенно актуален для состоявшихся специалистов, которые довольны своим стабильным доходом. Им просто интересна область ИИ. Но для того, чтобы поменять карьерный вектор, нужно переучиться. Это потребует и время, и финансы. Возникает вопрос: «А смогу ли я найти работу с не меньшей (желательно, и большей) зарплатой?».

    Проблема в том, что никто не сможет заранее ответить на этот вопрос: специалисты в области ИИ, машинного обучения и data science зарабатывают по-разному в зависимости от опыта, стажа, навыков, мастерства, уровня поставленных задач и конкретной компании.

    По данным hh.ru, разброс составляет от 75 до 300 тыс. рублей. Для сравнения, средняя зарплата мобайл-разработчика — 114 тыс., программиста Python — 105 тыс., программиста iOS — 100 тыс. Зарплата новичка без опыта работы будет, конечно, немного ниже, чем в целом по отрасли. Но зато и перспективы дальнейшего роста шире.

    Страх потерять доход тесно связан с боязнью не найти работу вообще. А это, в свою очередь, относится напрямую к мифу об ограниченности внедрения систем ИИ в экономике. Судя по информационному полю, создается впечатление, что ИИ в России использует только с десяток ведущих ИТ-компаний вроде «Яндекса», Mail.Ru Group, «МегаФона», МТС, «Билайна», Теле2, ABBYY и Сбербанка. Понятно, что требования к кандидатам там запредельны, туда очень сложно устроиться на работу.

    4 шага для разработки ИИ, которому человек будет полностью доверять

    ИТ-гиганты являются флагманами внедрения инноваций. На этом строятся их имидж и последовательная PR-поддержка. На самом деле возможности для трудоустройства гораздо шире. Элементы ИИ и data science сегодня используются повсеместно.

    • Банки. Несколько кредитных учреждений в России заявляют о себе как о высокотехнологичных структурах, говоря о внедрении нейронных сетей, сборе данных по социальным сетям и т.д. (Сбербанк, ВТБ, «Тинькофф банк», «Альфа-банк»). Это, опять же, часть их PR-работы с аудиторией. Причем внедрение ИИ позволяет зарабатывать миллиарды долларов. В реальности картина такова, что этим занимается в России каждый второй более-менее крупный банк, а в недалеком будущем будет каждый. Соответственно, в банковской сфере стабильно есть спрос на специалистов по обработке больших данных.
    • Промышленность. В последние годы идет бурное развитие нейронных сетей и машинного обучения в различных областях промышленности — например, в металлургической. В частности, речь идет о сотрудничестве Yandex Data Factory с Магнитогорским металлургическим комбинатом и другими предприятиями. Эта тема широкой публике не очень известна. Соответствующие статьи появляются только в специализированных изданиях. Хайп поднимается вокруг более очевидных «потребительских» вещей, вроде приложения Adobe Sensei. Но это не значит, что автоматизированный Photoshop — самое яркое достижение в области ИИ.
    • Склады. По всему миру склады переходят на практически полную автоматизацию с применением ИИ. Один из примеров — компания Symbotic, производящая автоматизированные склады, для обслуживания которых требуется всего восемь-девять человек в смену. Грузчики на этом складе заменены роботами с компьютерным зрением. Для таких объектов всегда будут требоваться операторы с соответствующей подготовкой. Подобный склад от другого производителя был недавно открыт в Подмосковье. Бизнес довольно осторожно относится к такого рода нововведениям. Компании наблюдают друг за другом и ждут, пока кто-то первый успешно внедрит инновацию. И уже тогда начнется лавинообразный процесс повсеместного применения. Именно это и ждет складское хозяйство в ближайшие пару лет.
    • Онлайн-ритейл. Множество игроков e-commerce имеют «вторую натуру». Например, Wildberries или Lamoda выглядят как фэшн-бизнес, но на самом деле это полноценные ИТ-компании с высокой степенью автоматизации и огромным объемом big data. Они нанимают аналитиков, умеющих предсказать, с какой вероятностью в тот или иной момент определенный человек купит какой-либо товар, и специалистов, быстро извлекающих информацию из баз данных. Поэтому онлайн-ритейл — большой рынок труда для специалистов в области ИИ, где они могут применять самый широкий спектр навыков.

    Расист, оружие и предвзятый судья — каким станет искусственный интеллект в будущем

    Есть еще множество примеров различных ниш — это и торговые офлайн-сети, которым нужны алгоритмы поиска отзывов в интернете, и медицина, где ИИ уже анализирует снимки, и маркетинговые компании, где нужно обрабатывать массивы видеоданных. Во всех этих сферах реализуются задачи различной сложности. Новичку, только закончившему обучение, нужно начинать с более простых вещей: например, заниматься обработкой баз данных. Банки подходят идеально — они накапливают огромное количество информации, складывающейся из заявок, анкет, сведений о клиентах. Эти данные нуждаются в очистке, разработке приемлемых форм хранения и передачи. А затем в дата-майнинге — поиске признаков, на основе которых можно построить какую-то полезную модель. Неопытному специалисту такая работа может дать мощный старт. Чтобы набить руку, нужно от шести до 12 месяцев. После этого можно пробовать свои силы в более сложных задачах, например, применять алгоритмы ИИ на средних и больших данных.

    Страх второй: я не смогу осилить высшую математику

    Компетенции ИИ-программистов складываются из трех блоков: высшая математика, программирование и предметная сфера. Последнее зависит от профиля организации. Учиться специально в этой области, как правило, не обязательно. Достаточный для занимаемой должности уровень знаний (например, в маркетинге или финансах) кандидат получает в ходе испытательного срока.

    С программированием все понятно — новички учатся охотно и с удовольствием. Для работающих профессионалов материал не представляет сложности: базовые знания уже есть, нужно только «добрать» недостающие навыки — языки, библиотеки, софт. А вот с высшей математикой все сложнее. В основном именно она отпугивает людей с дипломами гуманитариев или тех технарей, которые в вузе получили «психологическую травму» от бесконечной сдачи-пересдачи экзаменов по точным наукам.

    «Если изобретение с ИИ не приносит пользу, сам продукт никому не нужен»

    Этот страх можно назвать беспочвенным. Специалист по ИИ вовсе не обязан быть математическим гением. В область компетенции входит лишь небольшая часть линейной алгебры, определенные сферы матанализа и теории вероятностей, а также статистика. Точно таким же образом происходит подготовка в программировании: отнюдь не тотальный объем знаний, а только его часть — в частности, языки Python, C, C++, язык запросов SQL и Linux.

    Страх третий: я не смогу конкурировать с выпускниками физмата

    Эта боязнь присуща тем, кто не имеет диплома о высшем образовании либо имеет его совершенно в другой области. Но практика показывает, что в сфере программирования никто не обращает внимания на какие-либо регалии. Людей с дипломами много, а вот компетентных специалистов — нет.

    Есть два типа кандидатов, которые обычно заваливают собеседования на должность ИИ программиста.

    • Разработчики, у которых плохо с математикой. Кандидат может делать шикарные интерфейсы, но для работы с нейронными сетями и большими данными ему нужна математика. От этого никуда не деться. Такой специалист может освоить требуемый объем знаний в течение года. Например, на онлайн-курсах.
    • Математики или научные работники, профессиональные статистики, у которых недостаточно навыков в программировании. Они понимают алгоритмы ИИ, знают матанализ, теорию вероятностей и линейную алгебру, но не в состоянии выполнить тестовое задание средней сложности. Кандидат может иметь научную степень, но допускает грубейшие ошибки при написании кода. Таким специалистам нужно учиться год-полтора, чтобы закрыть пробелы в знаниях. Лучше это делать на продвинутых курсах, так как в вузах не дают достаточных навыков программирования и часто проводят обучение с использованием устаревших языков.

    Таким образом, выпускники физмата и даже кандидаты наук не имеют никакого автоматического преимущества перед обычным разработчиком, будь он хоть трижды гуманитарий.

    HR-специалисты самых топовых ИТ-гигантов сбиваются с ног в поисках таких эрудированных кандидатов со знанием английского языка. Если находят такого, то последнее, что они делают, это проверяют его диплом о высшем образовании. Рынок труда наводнен специалистами с однобокой подготовкой, а потому шиковать компаниям не приходится.

    Как построить карьеру в ИИ, не будучи математическим гением

    Переучиваться всегда страшно, особенно когда на кону стоит материальный статус и вопрос профессиональной востребованности. Но оставаться в ИТ-индустрии в стороне от современных трендов — ИИ, машинного обучения, нейросетей и data science — все равно, что остановиться в своем развитии. Но айтишники в России не спешат менять специализацию. Декан факультета ИИ в онлайн-университете GeekUniversity Сергей Ширкин рассказал «Хайтеку» о самых распространенных страхах среди ИИ-программистов и о том, чему нужно учиться для построения успешной карьеры в этой области.

    Разработчикам сегодня интересно не просто писать стандартные программы, а быть на «передовой» — получать специализацию в наиболее перспективных сферах. ИИ, нейронные сети, машинное обучение, big data и data science, без сомнения, очень интересные направления в программировании, и это все понимают. Но чтобы стать высококлассным дата-сайентистом, новичку придется освоить с нуля большой объем разносторонних знаний. А состоявшемуся специалисту иного профиля, например, фронтенд-разработчику, основательно «перековаться». Практика показывает, что решиться на это не всегда просто. Мешают три главных страха, с которыми сталкивается практически каждый, кто задумал строить карьеру в области ИИ.

    Страх первый: я не смогу найти работу с достойной зарплатой

    Этот вопрос особенно актуален для состоявшихся специалистов, которые довольны своим стабильным доходом. Им просто интересна область ИИ. Но для того, чтобы поменять карьерный вектор, нужно переучиться. Это потребует и время, и финансы. Возникает вопрос: «А смогу ли я найти работу с не меньшей (желательно, и большей) зарплатой?».

    Проблема в том, что никто не сможет заранее ответить на этот вопрос: специалисты в области ИИ, машинного обучения и data science зарабатывают по-разному в зависимости от опыта, стажа, навыков, мастерства, уровня поставленных задач и конкретной компании.

    По данным hh.ru, разброс составляет от 75 до 300 тыс. рублей. Для сравнения, средняя зарплата мобайл-разработчика — 114 тыс., программиста Python — 105 тыс., программиста iOS — 100 тыс. Зарплата новичка без опыта работы будет, конечно, немного ниже, чем в целом по отрасли. Но зато и перспективы дальнейшего роста шире.

    Страх потерять доход тесно связан с боязнью не найти работу вообще. А это, в свою очередь, относится напрямую к мифу об ограниченности внедрения систем ИИ в экономике. Судя по информационному полю, создается впечатление, что ИИ в России использует только с десяток ведущих ИТ-компаний вроде «Яндекса», Mail.Ru Group, «МегаФона», МТС, «Билайна», Теле2, ABBYY и Сбербанка. Понятно, что требования к кандидатам там запредельны, туда очень сложно устроиться на работу.

    4 шага для разработки ИИ, которому человек будет полностью доверять

    ИТ-гиганты являются флагманами внедрения инноваций. На этом строятся их имидж и последовательная PR-поддержка. На самом деле возможности для трудоустройства гораздо шире. Элементы ИИ и data science сегодня используются повсеместно.

    • Банки. Несколько кредитных учреждений в России заявляют о себе как о высокотехнологичных структурах, говоря о внедрении нейронных сетей, сборе данных по социальным сетям и т.д. (Сбербанк, ВТБ, «Тинькофф банк», «Альфа-банк»). Это, опять же, часть их PR-работы с аудиторией. Причем внедрение ИИ позволяет зарабатывать миллиарды долларов. В реальности картина такова, что этим занимается в России каждый второй более-менее крупный банк, а в недалеком будущем будет каждый. Соответственно, в банковской сфере стабильно есть спрос на специалистов по обработке больших данных.
    • Промышленность. В последние годы идет бурное развитие нейронных сетей и машинного обучения в различных областях промышленности — например, в металлургической. В частности, речь идет о сотрудничестве Yandex Data Factory с Магнитогорским металлургическим комбинатом и другими предприятиями. Эта тема широкой публике не очень известна. Соответствующие статьи появляются только в специализированных изданиях. Хайп поднимается вокруг более очевидных «потребительских» вещей, вроде приложения Adobe Sensei. Но это не значит, что автоматизированный Photoshop — самое яркое достижение в области ИИ.
    • Склады. По всему миру склады переходят на практически полную автоматизацию с применением ИИ. Один из примеров — компания Symbotic, производящая автоматизированные склады, для обслуживания которых требуется всего восемь-девять человек в смену. Грузчики на этом складе заменены роботами с компьютерным зрением. Для таких объектов всегда будут требоваться операторы с соответствующей подготовкой. Подобный склад от другого производителя был недавно открыт в Подмосковье. Бизнес довольно осторожно относится к такого рода нововведениям. Компании наблюдают друг за другом и ждут, пока кто-то первый успешно внедрит инновацию. И уже тогда начнется лавинообразный процесс повсеместного применения. Именно это и ждет складское хозяйство в ближайшие пару лет.
    • Онлайн-ритейл. Множество игроков e-commerce имеют «вторую натуру». Например, Wildberries или Lamoda выглядят как фэшн-бизнес, но на самом деле это полноценные ИТ-компании с высокой степенью автоматизации и огромным объемом big data. Они нанимают аналитиков, умеющих предсказать, с какой вероятностью в тот или иной момент определенный человек купит какой-либо товар, и специалистов, быстро извлекающих информацию из баз данных. Поэтому онлайн-ритейл — большой рынок труда для специалистов в области ИИ, где они могут применять самый широкий спектр навыков.

    Расист, оружие и предвзятый судья — каким станет искусственный интеллект в будущем

    Есть еще множество примеров различных ниш — это и торговые офлайн-сети, которым нужны алгоритмы поиска отзывов в интернете, и медицина, где ИИ уже анализирует снимки, и маркетинговые компании, где нужно обрабатывать массивы видеоданных. Во всех этих сферах реализуются задачи различной сложности. Новичку, только закончившему обучение, нужно начинать с более простых вещей: например, заниматься обработкой баз данных. Банки подходят идеально — они накапливают огромное количество информации, складывающейся из заявок, анкет, сведений о клиентах. Эти данные нуждаются в очистке, разработке приемлемых форм хранения и передачи. А затем в дата-майнинге — поиске признаков, на основе которых можно построить какую-то полезную модель. Неопытному специалисту такая работа может дать мощный старт. Чтобы набить руку, нужно от шести до 12 месяцев. После этого можно пробовать свои силы в более сложных задачах, например, применять алгоритмы ИИ на средних и больших данных.

    Страх второй: я не смогу осилить высшую математику

    Компетенции ИИ-программистов складываются из трех блоков: высшая математика, программирование и предметная сфера. Последнее зависит от профиля организации. Учиться специально в этой области, как правило, не обязательно. Достаточный для занимаемой должности уровень знаний (например, в маркетинге или финансах) кандидат получает в ходе испытательного срока.

    С программированием все понятно — новички учатся охотно и с удовольствием. Для работающих профессионалов материал не представляет сложности: базовые знания уже есть, нужно только «добрать» недостающие навыки — языки, библиотеки, софт. А вот с высшей математикой все сложнее. В основном именно она отпугивает людей с дипломами гуманитариев или тех технарей, которые в вузе получили «психологическую травму» от бесконечной сдачи-пересдачи экзаменов по точным наукам.

    «Если изобретение с ИИ не приносит пользу, сам продукт никому не нужен»

    Этот страх можно назвать беспочвенным. Специалист по ИИ вовсе не обязан быть математическим гением. В область компетенции входит лишь небольшая часть линейной алгебры, определенные сферы матанализа и теории вероятностей, а также статистика. Точно таким же образом происходит подготовка в программировании: отнюдь не тотальный объем знаний, а только его часть — в частности, языки Python, C, C++, язык запросов SQL и Linux.

    Страх третий: я не смогу конкурировать с выпускниками физмата

    Эта боязнь присуща тем, кто не имеет диплома о высшем образовании либо имеет его совершенно в другой области. Но практика показывает, что в сфере программирования никто не обращает внимания на какие-либо регалии. Людей с дипломами много, а вот компетентных специалистов — нет.

    Есть два типа кандидатов, которые обычно заваливают собеседования на должность ИИ программиста.

    • Разработчики, у которых плохо с математикой. Кандидат может делать шикарные интерфейсы, но для работы с нейронными сетями и большими данными ему нужна математика. От этого никуда не деться. Такой специалист может освоить требуемый объем знаний в течение года. Например, на онлайн-курсах.
    • Математики или научные работники, профессиональные статистики, у которых недостаточно навыков в программировании. Они понимают алгоритмы ИИ, знают матанализ, теорию вероятностей и линейную алгебру, но не в состоянии выполнить тестовое задание средней сложности. Кандидат может иметь научную степень, но допускает грубейшие ошибки при написании кода. Таким специалистам нужно учиться год-полтора, чтобы закрыть пробелы в знаниях. Лучше это делать на продвинутых курсах, так как в вузах не дают достаточных навыков программирования и часто проводят обучение с использованием устаревших языков.

    Таким образом, выпускники физмата и даже кандидаты наук не имеют никакого автоматического преимущества перед обычным разработчиком, будь он хоть трижды гуманитарий.

    HR-специалисты самых топовых ИТ-гигантов сбиваются с ног в поисках таких эрудированных кандидатов со знанием английского языка. Если находят такого, то последнее, что они делают, это проверяют его диплом о высшем образовании. Рынок труда наводнен специалистами с однобокой подготовкой, а потому шиковать компаниям не приходится.

    На каком языке пишут искусственный интеллект? Введение в ИИ. Искусственный интеллект: как и где изучать — отвечают эксперты

    Робототехники олицетворяют собой сочетание противоположностей. Как специалисты, они искушены в тонкостях своей специализации. Как универсалы, они способны охватить проблему в целом в той степени, что позволяет имеющаяся обширная база знаний. Предлагаем вашему вниманию интересный материал на тему умений и навыков, которые необходимы настоящему робототехнику.

    А кроме самого материала также комментарии одного из наших робо-экспертов, куратора екатеринбургского , Олега Евсегнеева.

    Инженеры-робототехники, как правило, попадают в две категории специалистов: думающих (теоретиков) и делающих (практиков). Это означает, что робототехники должны отличаться хорошим сочетанием двух противоположных стилей работы. «Склонные к исследованиям» люди вообще любят решать проблемы, думая, читая и изучая. С другой стороны, специалисты-практики любят решать проблемы лишь «испачкав руки», можно так сказать.

    В робототехнике нужен тонкий баланс между напряженными исследованиями и расслабленной паузой, то есть работа над реальной задачей. В представленный перечень попали 25 профессиональных умений, сгруппированных в 10 существенных для роботостроителей навыков.

    1. Системное мышление

    Один из менеджеров проекта однажды заметил, что многие, связанные с робототехникой люди, оказываются впоследствии менеджерами проектов или системными инженерами. В этом есть особый смысл, так как роботы являются очень сложными системами. Занимающийся роботами специалист должен быть хорошим механиком, электронщиком, электриком, программистом и даже обладать познаниями в психологии и когнитивной деятельности.

    Хороший робототехник в состоянии понять и теоретически обосновать, как совместно и слаженно взаимодействуют все эти разнообразные системы. Если инженер-механик может вполне обоснованно сказать: «это не моя работа, тут нужен программист или электрик», то робототехник должен хорошо разбираться во всех этих дисциплинах.

    Вообще, системное мышление является важным навыком для всех инженеров. Наш мир – одна большая сверхсложная система. Навыки системной инженерии помогают правильно понять, что и как связано в этом мире. Зная это, можно создавать эффективные системы управления реальным миром.

    2. Мышление программиста

    Программирование является довольно важным навыком для робототехника. При этом не имеет значения, занимаетесь ли вы низкоуровневыми системами управления (используя лишь MATLAB для проектирования контроллеров) или являетесь специалистом по информатике, проектирующим высокоуровневые когнитивные системы. Занимающиеся роботами инженеры могут быть привлечены к работе по программированию на любом уровне абстракции. Основное различие между обычным программированием и программированием роботов заключается в том, что робототехник взаимодействует с оборудованием, электроникой и беспорядком реального мира.

    Сегодня используется более 1500 языков программирования. Несмотря на то, что вам явно не нужно будет учить их все, хороший робототехник обладает мышлением программиста. А они будут комфортно чувствовать себя при изучении любого нового языка, если вдруг это потребуется. И тут мы плавно переходим к следующему навыку.

    Комментарий Олега Евсегнеева: Я бы добавил, что для создания современных роботов требуется знание языков низкого, высокого и даже сверхвысокого уровня. Микроконтроллеры должны работать очень быстро и эффективно. Чтобы этого достичь, нужно углубляться в архитектуру вычислительного устройства, знать особенности работы с памятью и низкоуровневыми протоколами. Сердцем робота может быть тяжелая операционная система, например, ROS. Здесь уже может понадобиться знание ООП, умение пользоваться серьезными пакетами машинного зрения, навигации и машинного обучения. Наконец, чтобы написать интерфейс робота в веб и связать его с сетью интернет, неплохо будет научиться скриптовым языкам, тому же python.

    3. Способность к самобучению

    О робототехнике невозможно знать все, всегда есть что-то неизвестное, что придется изучать, когда возникнет в том необходимость при реализации очередного проекта. Даже после получения высшего образования по специальности робототехника и нескольких лет работы в качестве аспиранта многие только начинают по-настоящему понимать азы робототехники.

    Стремление к постоянному изучению чего-то нового является важной способностью на протяжении всей вашей карьеры. Поэтому использование эффективных лично для вас методов обучения и хорошее восприятие прочитанного помогут вам быстро и легко получать новые знания, когда в этом возникает необходимость.

    Комментарий Олега Евсегнеева: Это ключевой навык в любом творческом деле. С помощью него можно получить другие навыки

    В робототехнике имеется не так много основополагающих навыков. Одним из таких основных навыков является математика. Вам, вероятно, трудно будет добиться успеха в робототехнике без надлежащего знания, по крайней мере, алгебры, математического анализа и геометрии. Это связано с тем, что на базовом уровне робототехника опирается на способность понимать и оперировать абстрактными понятиями, часто представляемыми в виде функций или уравнений. Геометрия является особенно важной для понимания таких тем, как кинематика и технические чертежи (которых вам, вероятно, придется много сделать в течение карьеры, включая те, что будут выполнены на салфетке).

    Комментарий Олега Евсегнеева: Поведение робота, его реакция на окружающие раздражители, способность учиться – это все математика. Простой пример. Современные беспилотники хорошо летают благодаря фильтру Калмана – мощному математическому инструменту для уточнения данных о положении робота в пространстве. Робот Asimo умеет различать предметы благодаря нейронным сетям. Даже робот-пылесос использует сложную математику, чтобы правильно построить маршрут по комнате.

    5. Физика и прикладная математика

    Есть некоторые люди (чистые математики, например), которые стремятся оперировать математическими понятиями без привязки к реальному миру. Создатели роботов не относятся к такому типу людей. Познания в физике и прикладной математике важны в робототехнике, потому что реальный мир никогда не бывает таким точным, как математика. Возможность решить, когда результат расчета достаточно хорош, чтобы на самом деле работать – это ключевой навык для инженера-робототехника. Что плавно подводит нас к следующему пункту.

    Комментарий Олега Евсегнеева: Есть хороший пример – автоматические станции для полета на другие планеты. Знание физики позволяет настолько точно рассчитать траекторию их полета, что спустя годы и миллионы километров аппарат попадает в точно заданную позицию.

    6. Анализ и выбор решения

    Быть хорошим робототехником означает постоянно принимать инженерные решения. Что выбрать для программирования — ROS или другую систему? Сколько пальцев должен иметь проектируемый робот? Какие датчики выбрать для использования? Робототехника использует множество решений и среди них почти нет единственно верного.

    Благодаря обширной базе знаний, используемой в робототехнике, вы могли бы найти для себя более выгодное решение определенных проблем, чем специалисты из более узких дисциплин. Анализ и принятие решений необходимы для того, чтобы извлечь максимальную пользу из вашего решения. Навыки аналитического мышления позволят вам анализировать проблему с различных точек зрения, в то время как навыки критического мышления помогут использовать логику и рассуждения, чтобы сбалансировать сильные и слабые стороны каждого решения.

    Процесс создания искусственного интеллекта , с первого взгляда кажется довольно таки сложным занятием. Наблюдая за этими красивыми примерами ИИ , можно понять, что создавать интересные программы с ИИ можно. В зависимости от цели, нужны разные уровни знаний. Некоторые проекты требуют глубоких знаний ИИ, другие проекты требуют лишь знания языка программирования, но главный вопрос, которые стоит перед программистом. Какой язык выбрать для программирования искусственного интеллекта? Вот список языков для ИИ, которые могут быть полезными.

    Первый компьютерный язык, применяемый для создания искусственного интеллекта — ЛИСП. Этот язык является довольно таки гибким и расширяемым. Такие особенности, как быстрое прототипирование и макросы очень полезны в создании ИИ. LISP — это язык, который превращает сложные задачи в простые. Мощная система объектно-ориентированности делает LISP одним из самых популярных языков программирования для искусственного интеллекта.

    Основные преимущества этого многофункционального языка являются: прозрачность, переносимость и удобство сопровождения. Еще одним преимуществом языка Java является универсальность. Если вы новичок, то вас обрадует тот факт, что существуют сотни видеоуроков в Интернете, что сделает ваше обучение легче и эффективнее.

    Основными особенностями java являются: легкая отладка, хорошее взаимодействие с пользователем, простота работы с большими проектами. Проекты, созданные с помощью языка Java имеют привлекательный и простой интерфейс.

    Prolog

    Это интерактивный символический язык программирования популярен для проектов, которые требуют логики. Имея мощную и гибкую основу, она широко применяется для non-численного программирования, доказательства теорем, обработки естественного языка, создания экспертных систем и искусственного интеллекта в целом.

    Пролог — это декларативный язык с формальной логикой. Разработчики искусственного интеллекта ценят его за высокий уровень абстракции, встроенный механизм поиска, недетерминизм и т.д.

    Python

    Python — широко используется программистами из-за его чистой грамматики и синтаксиса, приятного дизайна. Различные структуры данных, куча Фреймворков тестирования, соотношение высокого уровня и низкого уровня программирования, которые делают Питон одним из самых популярных языков программирования для искусственного интеллекта.

    История развития ИИ

    Для того, чтобы увидеть связь между ИИ и языком программирования, давайте рассмотрим наиболее важные события в истории ИИ. Все началось в 1939 году, когда робот Электро был представлен на Всемирной выставки. Следующий робот был построен в 1951 году, Эдмундом Беркли.

    Робот Робби был построен в 1956 году. К сожалению, нет информации о том, как он был разработан. В 1958 году, был изобретен язык программирования ЛИСП. Хотя этот язык был разработан 60 лет назад, он до сих пор остается основным языком для многих программ искусственного интеллекта.

    В 1961 году, был построен UNIMATE. Это первый промышленный робот, который выпускается серийно. Этот робот был использован в «Дженерал Моторс» для работы на производственной линии. Для изготовления UNIMATE ученые использовали Валь, переменная ассемблера. Этот язык состоит из простых фраз, команд монитора, и инструкций, которые не требуют пояснений.

    Система искусственного интеллекта Dendral, была построена в 1965 году. Она помогала легко определять молекулярную структуру органических соединений. Эта система была написана на Лиспе.

    В 1966 году, Weizenbaum создал Элизу, первого виртуального собеседника. Одна из самых знаменитых моделей назывался Доктор, он отвечал на вопросы в стиле психотерапевта. Этот бот был реализован при сопоставлении образцов техники. Первая версия Элизы была написана на SLIP, список обработки языка был разработан Weizenbaum. Позже одна из его версий была переписана на Лиспе.

    Первый мобильный робот, запрограммированный на Лиспе был Шеки. С помощью решения задач программы прокладок и датчиков, шейки двигался, включал и выключал свет, поднимался вверх и вниз, открывал двери, закрывал двери, толкал предметы, и двигал вещи. Перемещался Шеки со скоростью 5 км в час.

    В ближайшие 15 лет мир увидел множество удивительных изобретений: Сторожевого робота Деннинг, ЛМИ Лямбда, Omnibot 2000, MQ-1 Predator беспилотный, Ферби, АЙБО робот собака, и Хонда АСИМО.

    Мастер Йода рекомендует:  А вы уверены, что общаетесь с человеком

    В 2003 году iRobot изобрел робот-пылесос Roomba. Разработанный на Лиспе, это автономный пылесос моет полы, используя определенные алгоритмы. Он обнаруживает препятствия и обходит их.

    А какой язык программирования используете вы, для разработки программ с ИИ? Напишите о ваших работах в комментариях или в нашей группе вконтакте.

    Этой статьей я начинаю серию публикаций, посвященных проблеме программирования искусственного интеллекта. Цель этого цикла — показать, каким образом (в смысле общих принципов) осуществляется программирование искусственного интеллекта.

    Само понятие «искусственный интеллект» возникло где-то на заре вычислительной техники. Несмотря на почтенный возраст, термин этот не имеет точного определения и всегда понимался в интуитивном смысле. Обычно говорят, что к области искусственного интеллекта относятся те задачи, которые до сих пор человек решает лучше, чем компьютер. Таким образом, круг решаемых в рамках искусственного интеллекта проблем постоянно динамически изменяется. Например, еще несколько лет назад обучение ЭВМ игре в шахматы являлось прерогативой AI (от английского Artifical Intelligence — искусственный интеллект), но сегодня все больше специалистов считает, что игра в шахматы уже не является проблемой искусственного интеллекта. Сегодня главными проблемами, решаемыми в рамках AI, являются примерно следующие: построение экспертных систем, решение задач поиска, в которых полный перебор вариантов теоретически невозможен (в том числе — программирование игр), моделирование биологических форм, распознавание образов. Фундаментальные принципы решения всех этих задач были заложены еще в начале семидесятых, но, в связи с тем, что задачи AI очень ресурсоемки, настоящее развитие они получили только в наши дни.

    Для решения задач AI еще в начале семидесятых годов были созданы два специфических языка программирования — Пролог (Prolog) и Лисп (LISP). Современный разработчик искусственного интеллекта должен свободно владеть каждым из них. Далее остановимся на самых характерных их особенностях.

    Исторически Лисп более старый язык. Концепция, которую он представляет, называется функциональным программированием , она является прямым продолжением обычного алгоритмического подхода. Лисп-программа представляет собой функцию, результат вычисления которой — это результат работы программы, а аргументы, чаще всего — другие вызовы функций. В связи с объективными причинами в Лиспе принята бесскобочная запись при вызове функций, вызов любой функции осуществляется при помощи списка, первым элементом которого является название функции, а все остальные элементы представляют аргументы. Например, сложение двух чисел A и B может выглядеть так: (add A B), сложение трех чисел — так: (add A (add B C)). Самой важной особенностью Лиспа является то, что запись вида (add A B) может представлять из себя не только список, как вызов функции, но и список, как элемент данных, содержащий в себе три компоненты — add, A и B. Решение о том, следует ли использовать список как данные, или его необходимо интерпретировать, в рамках Лиспа может приниматься самой программой. Таким образом, программа получает возможность модифицировать собственный код, что чрезвычайно важно для приложений AI.

    Пролог для меня более интересен, чем Лисп, поскольку использует подход к программированию, принципиально отличный от алгоритмического и называемый целевым или декларативным программированием. При алгоритмическом программировании мы задаем последовательность действий, которые должна выполнять программа, т.е. описываем, КАК она должна работать. При декларативном программировании мы описываем, ЧТО программа должна делать, а то, как будут осуществлены эти действия — дело Пролог-системы. Рассмотрим типичнейшую Пролог-задачу — определение, в каких родственных отношениях находятся те или иные люди. В качестве исходных выберем отношение родитель(X,Y), обозначающее, что X является родителем Y, и отношения мужчина(X) и женщина (X), обозначающие принадлежность лица к одному из полов. Тогда исходные данные для программы могут выглядеть примерно так.

    мужчина(Сергей). женщина(Тамара). мужчина(Семен). женщина (Людмила). мужчина(Павел).

    родитель(Сергей, Семен). родитель(Тамара, Семен). родитель(Семен, Павел).

    Как можно видеть, это — небольшая база данных, естественно представляющая генеалогическое дерево. Каждое из выражений в ней является утверждением, в Прологе такие утверждения называют фактами. База может быть легко расширена.

    Теперь введем выражение дед(X,Y), обозначающее, является ли X дедом Y. Мы используем два Прологовских символа — запятая в следующей записи обозначает логическое и, а символ:- обозначает если.

    дед(X,Y):- родитель(X,Z), родитель(Z,Y),мужчина(X).

    Эта условная запись является таким же элементом базы данных, как и факты, в Прологе такие элементы принято называть правилами.

    На самом деле та Пролог-программа, которую мы написали, умеет делать очень многое (это наверняка удивит тех, кто до сих пор был знаком только с алгоритмическим программированием). После запуска ее на выполнение Пролог-система выдаст запрос на ввод вопроса. Для начала введем дед(X,Павел) (по-русски этот вопрос звучит так: «Кто дед Павла?»), система выдаст X=Сергей. Теперь спросим дед(Тамара, Павел) («Является ли Тамара дедом Павла?»). Получим ответ no (нет). Можно спросить родитель(X,_) (так, как на Прологе _ обозначает, что значение этого элемента отношения для нас не важно, то данная запись по-русски звучит, как «Кто является чьим-либо родителем?»). Получим X=Сергей, X=Тамара, X=Семен, X=Людмила. Этим круг вопросов, которые можно задать нашей программе, далеко не исчерпывается.

    Как видим, в задачах, связанных с заданием отношений между объектами, Пролог гораздо мощнее алгоритмических языков типа Паскаля или Си. Если добавить к этому, что база данных Пролога (содержащая факты и правила) может динамически изменяться во время выполнения самой же программой или пользователем, становится ясно, насколько полезен Пролог для разработки в области искусственного интеллекта.

    Если читателя заинтересовали Лисп и Пролог, он может изучить их самостоятельно — языки очень просты. Я же в последующих публикациях не буду останавливаться на лингвистических проблемах, стараясь уделить внимание только фундаментальным методам программирования в области AI.

    Работающий на стыке кибернетики, психологии и бихевиоризма (науки о поведении), и инженер, составляющий алгоритмы для промышленных роботизированных комплексов, среди основных инструментов которого — высшая математика и мехатроника, работают в самой перспективной отрасли ближайших лет — робототехнике. Роботы, несмотря на сравнительную новизну термина, издавна знакомы человечеству. Вот лишь несколько фактов из истории развития умных механизмов.

    Железные люди Анри Дро

    Еще в мифах Древней Греции упоминались механические рабы, созданные Гефестом для выполнения тяжелых и однообразных работ. А первым изобретателем и разработчиком человекоподобного робота стал легендарный Леонардо да Винчи. До наших дней сохранились подробнейшие чертежи итальянского гения, описывающие механического рыцаря, способного имитировать человеческие движения руками, ногами, головой.

    Созданию первых автоматических механизмов с программным управлением положили начало в конце XVΙΙΙ века европейские часовые мастера. Наиболее преуспели на этом поприще швейцарские специалисты отец и сын Пьер-Жак и Анри Дро. Ими создана целая серия («пишущий мальчик», «рисовальщик», «музыкантша») в основе управления которыми лежали часовые механизмы. Именно в честь Анри Дро в дальнейшем все программируемые человекоподобные автоматы стали называть «андроидами».

    У истоков программирования

    Основы программирования промышленных роботов были заложены на заре XIX века во Франции. Здесь же и были разработаны первые программы для автоматических текстильных станков (прядильных и ткацких). Стремительно растущая армия Наполеона остро нуждалась в обмундировании и, следовательно, тканях. Изобретатель из Лиона Жозеф Жаккар предложил способ быстрой перенастройки ткацкого станка для производства различных видов продукции. Нередко эта процедура требовала огромного количества времени, колоссальных усилий и внимания целого коллектива. Суть нововведения сводилась к использованию картонных карточек с перфорированными отверстиями. Иглы, попадая в просеченные места, необходимым образом смещали нити. Смена карт быстро проводилась оператором станка: новая перфокарта — новая программа — новый тип ткани или узора. Французская разработка стала прообразом современных автоматизированных комплексов, роботов с возможностью программирования.

    Идею, предложенную Жаккаром, с восторгом использовали в своих автоматических устройствах многие изобретатели:

    • Начальник статистического управления С. Н. Корсаков (Россия, 1832 г.) — в механизме для сравнивания и анализа идей.
    • Математик Чарльз Бэббидж (Англия, 1834 г.) — в аналитической машине для решения широкого круга математических задач.
    • Инженер (США, 1890 г.) — в устройстве для хранения и обработки статистических данных (табуляторе). Для заметки: в 1911 году компания. Холлерита получила название IBM (International Business Machines).

    Перфокарты были основными носителями информации вплоть до 60-х годов прошлого века.

    Своим названием интеллектуальные машины обязаны чешскому драматургу В пьесе «R.U.R.», увидевшей свет в 1920 году, писатель назвал роботом искусственного человека, созданного для тяжелых и опасных участков производства (robota (чешск.) — каторга). А что отличает робота от механизмов и автоматических устройств? В отличие от последних, робот не только выполняет определенные действия, слепо следуя заложенному алгоритму, но и способен более тесно взаимодействовать с окружающей средой и человеком (оператором), адаптировать свои функции при изменении внешних сигналов и условий.

    Принято считать, что первый действующий робот был сконструирован и реализован в 1928 году американским инженером Р. Уэнсли. Человекоподобный «железный интеллектуал» получил имя Герберт Телевокс. На лавры пионеров претендуют также ученый-биолог Макото Нисимура (Япония, 1929 г.) и английский военнослужащий Уильям Ричардс (1928 г.). Созданные изобретателями антропоморфные механизмы имели схожий функционал: способны были двигать конечностями и головой, выполнять голосовые и звуковые команды, отвечать на простые вопросы. Основным предназначением устройств была демонстрация научно-технических достижений. Очередной виток в развитии технологий позволил в скором времени создать и первых индустриальных роботов.

    Поколение за поколением

    Разработка робототехники представляет собой непрерывный, поступательный процесс. К настоящему моменту сформировались три ярко выраженных поколения «умных» машин. Каждое характеризуется определенными показателями и сферами применения.

    Первое поколение роботов создавалось для узкого вида деятельности. Машины способны выполнять только определенную запрограммированную последовательность операций. Устройства управления роботами, схемотехника и программирование практически исключают автономное функционирование и требуют создания специального технологического пространства с необходимым дополнительным оборудованием и информационно-измерительными системами.

    Машины второго поколения называют очувствленными, или адаптивными. Программирование роботов осуществляется с учетом большого набора внешних и внутренних сенсоров. На основе анализа информации, поступающей с датчиков, вырабатываются необходимые управляющие воздействия.

    И наконец, третье поколение — интеллектуальные роботы, которые способны:

    • Обобщать и анализировать информацию,
    • Совершенствоваться и самообучаться, накапливать навыки и знания,
    • Распознавать образы и изменения ситуации, и в соответствии с этим выстраивать работу своей исполнительной системы.

    В основе искусственного интеллекта лежит алгоритмическое и программное обеспечение.

    Общая классификация

    На любой представительной современной выставке роботов многообразие «умных» машин способно поразить не только простых обывателей, но и специалистов. А какие бывают роботы? Наиболее общую и содержательную классификацию предложил советский ученый А. Е. Кобринский.

    По назначению и выполняемым функциям роботов подразделяют на производственно-промышленные и исследовательские. Первые, в соответствии с характером выполняемых работ, могут быть технологическими, подъемно-транспортными, универсальными или специализированными. Исследовательские предназначены для изучения областей и сфер, опасных или недоступных для человека (космическое пространство, земные недра и вулканы, глубоководные слои мирового океана).

    По типу управления можно выделить биотехнические (копирующие, командные, киборги, интерактивные и автоматические), по принципу — жестко программируемые, адаптивные и гибко программируемые. Бурное развитие современной предоставляет разработчикам практически безграничные возможности при проектировании интеллектуальных машин. Но отличное схемное и конструктивное решение будет служить лишь дорогостоящей оболочкой без соответствующего программного и алгоритмического обеспечения.

    Чтобы кремний микропроцессора смог взять на себя функции мозга робота, необходимо «залить» в кристалл соответствующую программу. Обычный человеческий язык не способен обеспечить четкую формализацию задач, точность и надежность их логической оценки. Поэтому требуемая информация представляется в определенном виде с помощью языков программирования роботов.

    В соответствии с решаемыми задачами управления выделяют четыре уровня такого специально созданного языка:

    • Низший уровень используется для управления исполнительными приводами в виде точных значений линейного или углового перемещения отдельных звеньев интеллектуальной системы,
    • Уровень манипулятора позволяет осуществлять общее управление всей системой, позиционируя рабочий орган робота в координатном пространстве,
    • Уровень операций служит для формирования рабочей программы, путем указания последовательности необходимых действий для достижения конкретного результата.
    • На высшем уровне — заданий — программа без детализации указывает что надо сделать.

    Робототехники стремятся свести программирование роботов к общению с ними на языках высшего уровня. В идеале оператор ставит задачу: «Произвести сборку двигателя внутреннего сгорания автомобиля» и ожидает от робота полного выполнения задания.

    Языковые нюансы

    В современной робототехнике программирование роботов развивается по двум векторам: роботоориентированное и проблемно ориентированное программирование.

    Наиболее распространенные роботоориентированные языки — AML и AL. Первый разработан фирмой IBM только для управления интеллектуальными механизмами собственного производства. Второй — продукт специалистов Стэндфордского университета (США) — активно развивается и оказывает существенное влияние на формирование новых языков этого класса. Профессионал легко разглядит в языке характерные черты Паскаля и Алгола. Все языки, ориентированные на роботов, описывают алгоритм, как последовательность действий «умного» механизма. В связи с этим программа зачастую выходит очень громоздкой и неудобной в практической реализации.

    При программировании роботов на проблемно ориентированных языках, в программе указывается последовательность не действий, а целей или промежуточных позиций объекта. Наиболее популярным в этом сегменте является язык AUTOPASS (IBM), в котором состояние рабочей среды представлено в виде графов (вершины — объекты, дуги — связи).

    Обучение роботов

    Любой современный робот представляет собой обучаемую и адаптивную систему. Вся необходимая информация, включающая знания и умения, передается ей в процессе обучения. Это осуществляется, как непосредственным занесением в память процессора соответствующих данных (детальное программирование — семплинг), так и с использованием сенсоров робота (методом наглядной демонстрации) — все движения и перемещения механизмов робота заносятся в память и затем воспроизводятся в рабочем цикле. Обучаясь, система перестраивает свои параметры и структуру, формирует информационную модель внешнего мира. Это и есть основное отличие роботов от автоматизированных линий, промышленных автоматов с жесткой структурой и других традиционных средств автоматизации. Перечисленные методы обучения обладают существенными недостатками. Например, при семплинге перенастройка требует определенного времени и труда квалифицированного специалиста.

    Весьма перспективной выглядит программа для программирования роботов, представленная разработчиками Лаборатории информационных технологий при Массачусетском технологическом институте (CSAIL MIT) на международной конференции промышленной автоматизации и робототехники ICRA-2020 (Сингапур). Созданная ими платформа C-LEARN обладает достоинствами обоих методов. Она предоставляет роботу библиотеку элементарных движений с заданными ограничениями (например, усилие хвата для манипулятора в соответствии с формой и жесткостью детали). В то же время, оператор демонстрирует роботу ключевые движения в трехмерном интерфейсе. Система, исходя из поставленной задачи, формирует последовательность операций для выполнения рабочего цикла. C-LEARN позволяет переписать существующую программу для робота другой конструкции. Оператору при этом не требуются углубленные знания в области программирования.

    Робототехника и искусственный интеллект

    Специалисты Оксфордского университета предупреждают, что в ближайшие два десятилетия машинные технологии заменят более половины сегодняшних рабочих мест. Действительно, роботы давно уже трудятся не только на опасных и трудных участках. Например, программирование значительно потеснило брокеров-людей на мировых биржах. Несколько слов об искусственном интеллекте.

    В представлении обывателя это антропоморфный робот, способный заменить человека во многих сферах жизни. Отчасти так и есть, но в большей степени искусственный интеллект — это самостоятельная отрасль науки и технологии, с помощью компьютерных программ, моделирующая мышление «Homo sapiens», работу его мозга. На сегодняшнем этапе развития ИИ больше помогает людям, развлекает их. Но, по прогнозам экспертов, дальнейший прогресс в области робототехники и искусственного интеллекта может поставить перед человечеством целый ряд морально-этических и юридических вопросов.

    В этом году на выставке роботов в Женеве самый совершенный андроид София заявила, что учится быть человеком. В октябре София впервые в истории искусственного интеллекта была признана гражданкой Саудовской Аравии с полноценными правами. Первая ласточка?

    Основные тенденции робототехники

    В 2020 году специалисты цифровой индустрии отметили несколько выдающихся решений в области технологий виртуальной реальности. Не осталась в стороне и робототехника. Очень перспективным выглядит направление совершенствующее управление сложным робомеханизмом через виртуальный шлем (VR). Эксперты пророчат востребованность такой технологии в бизнесе и промышленности. Вероятные сценарии использования:

    • Управление беспилотной техникой (складскими погрузчиками и манипуляторами, дронами, трейлерами),
    • Проведение медицинских исследований и хирургических операций,
    • Освоение труднодоступных объектов и областей (дно океана, полярные области). Кроме того, программирование роботов позволяет им осуществлять и автономную работу.

    Еще один популярный тренд — connected car. Совсем недавно представители гиганта Apple заявили о старте разработок собственного «беспилотника». Все больше фирм выражают свою заинтересованность в создании машин, способных самостоятельно перемещаться по пересеченным трассам, сохраняя грузы и оборудование.

    Возрастающая сложность алгоритмов программирования роботов и машинного обучения предъявляет повышенные требования к вычислительным ресурсам и, следовательно, к «железу». По-видимому, оптимальным выходом в этом случае будет подключение устройств к облачной инфраструктуре.

    Важное направление — когнитивная робототехника. Стремительный рост количества «умных» машин заставляет разработчиков все чаще задумываться о том, как научить роботов слаженно взаимодействовать.

    Где он рассказал об одной из своих целей, которая привела в профессию – желанию познать принцип работы и научиться создавать самому игровых ботов.

    А ведь действительно, именно желание создать совершенный искусственный интеллект, будь то игровая модель или мобильная программа, сподвигла на путь программиста многих из нас. Проблема в том, что за тоннами учебного материала и суровой действительностью заказчиков, это самое желание было заменено простым стремлением к саморазвитию. Для тех, кто так и не приступил к исполнению детской мечты, далее краткий путеводитель по созданию настоящего искусственного разума.

    Стадия 1. Разочарование

    Когда мы говорим о создании хотя бы простых ботов, глаза наполняются блеском, а в голове мелькают сотни идей, что он должен уметь делать. Однако, когда дело доходит до реализации, оказывается, что ключом к разгадке реальной модели поведения является. математика. Если быть немного конкретнее, то вот список её разделов, которые необходимо проштудировать хотя бы в формате университетского образования:

    Теория вероятностей и математическая статистика.

    Это тот научный плацдарм, на котором будут строится ваше дальнейшее программирование. Без знания и понимания этой теории все задумки быстро разобьются о взаимодействие с человеком, ведь искусственный разум на самом деле не больше, чем набор формул.

    Стадия 2. Принятие

    Когда спесь немного сбита студенческой литературой, можно приступать к изучению языков. Бросаться на LISP или другие пока не стоит, для начала надо научиться работать с переменными и однозначными состояниями. Как для быстрого изучения, так и дальнейшего развития прекрасно подойдёт , но в целом можно взять за основу любой язык, имеющий соответствующие библиотеки.

    Стадия 3. Развитие

    Теперь переходим непосредственно к теории ИИ. Их условно можно разделить на 3 категории:

    Слабый ИИ – боты, которых мы видим в компьютерных играх, или простые подручные помощники, вроде Siri. Они или выполняют узкоспециализированные задачи или являются незначительным комплексом таковых, а любая непредсказуемость взаимодействия ставит их в тупик.

    Сильный ИИ – это машины, интеллект которых сопоставим с человеческим мозгом. На сегодняшний день нет реальных представителей этого класса, но компьютеры, вроде Watson очень близки к достижению этой цели.

    Совершенные ИИ – будущее, машинный мозг, который превзойдёт наши возможности. Именно об опасности таких разработок предупреждают Стивен Хоккинг, Элон Маск и кинофраншиза «Терминатор».

    Естественно, начинать следует с самых простых ботов. Для этого вспомните старую-добрую игру «Крестики-нолики» при использовании поля 3х3 и постарайтесь выяснить для себя основные алгоритмы действий: вероятность победы при безошибочных действиях, наиболее удачные места на поле для расположения фигуры, необходимость сводить игру к ничьей и так далее.

    Как вы поняли даже из названий, это API, которые позволят без лишних затрат времени создать некоторое подобие серьёзного ИИ.

    Стадия 5. Работа

    Теперь же, когда вы уже вполне ясно представляете, как ИИ создавать и чем при этом пользоваться, пора выводить свои знания на новый уровень. Во-первых, для этого потребуется изучение дисциплины, которое носит название «Машинное обучение» . Во-вторых, необходимо научиться работать с соответствующими библиотеками выбранного языка программирования. Для рассматриваемого нами Python это Scikit-learn, NLTK, SciPy, PyBrain и Nump. В-третьих, в развитии никуда не обойтись от

    Программируем искусственный интеллект. Искусственный интеллект: как и где изучать — отвечают эксперты. Главные задачи при проектировании искусственного интеллекта

    Основной вопрос перед разработчиком – какому языку отдать предпочтение для создания ИИ? Мы рассмотрим популярные языки, используемые для создания ИИ.

    Одно только лишь название «искусственный интеллект» может привести в ступор и навести немало страха как на обычного человека, так и заурядного программиста. Занятие действительно сложное, а красивые демонстрируемые примеры — это результат многотысячных строк кода. При всём этом создание ИИ может стать вполне реальной задачей, а в части случаев, даже несложной. Многие проекты требуют углублённых знаний ИИ, а также языков программирования.

    Родоначальником языков программирования, на которых начал создаваться искусственный интеллект стал LISP . ЛИСП отличается гибкостью использования и простотой расширения функционала. Благодаря наличию возможности быстрого прототипирования и установки макросов удалось сократить уйму времени, это принесло много пользы в отношении ИИ.

    LISP стал универсальным языком, который равно хорошо справляется с относительно тяжёлыми и лёгкими задачами. В нём устроена качественная и продвинутая система объектно-ориентированности , что и позволило занять одну из лидирующих позиций при разработке ИИ.

    Наибольшим достоинством языка является многофункциональность, среди прочих:

    • прозрачность использования и написания кода;
    • способность легко переносить программы;
    • лёгкое сопровождение проектов.

    Для новичков важным достоинством Java станет наличие многочисленных бесплатных уроков в сети. Обучение Java является максимально комфортным и удобным для большинства студентов и новичков.

    Среди особенностей языка стоит выделить:

    • простота выполнения отладки;
    • качественное взаимодействие клиентской и серверной системы ресурса;
    • лёгкость обращения с масштабными проектами.

    При создании проектов на Java пользователь сталкивается с более привлекательным и доступным интерфейсом, что всегда притягивает аудиторию.

    Prolog

    Данный вариант относится к интерактивным языкам, которые работают по символической системе. Он популярен для использования в отношении проектов, требующих высокие логические способности. Язык имеет мощную и удобную основу, она активно используется в отношении программирования non-численного типа . На основании Prolog`а часто создаются доказательства теорем, проводится взаимодействие с понятным человеческим языком, используется для создания систем экспертной оценки.

    Пролог относится к декларативным типам языка, которые используют формальное или образное «мышление ». Среди разработчиков ИИ приобрёл хорошую славу благодаря оптимальным обструкционным типам работы, встроенным алгоритмам анализа, недетерминизма и т.д. Всё в сумме можно описать так: Prolog — многофункциональная платформа для программирования ИИ.

    Python

    Активно применяется в программировании благодаря чистому синтаксису и логическому, строгому грамматическому построению программы. Немаловажную роль играет и удобный дизайн.

    В основе используются многочисленные структурные алгоритмы, бесчисленные фреймворки для отладки, оптимальным показателям взаимодействия низкого и высокого уровня написания кода. Все перечисленные достоинства обеспечивают должное влияние в сфере создания искусственного интеллекта.

    История развития ИИ

    Началом традиционного представления ИИ стал проект UNIMATE , который увидел мир в 1961 году . В ходе представления был впервые получен робот, который начал выпускаться в промышленных масштабах. Робот был задействован на линии производства в концерне «General Motors ». Для создания были задействованы Валь и переменные из среды ассемблера. Язык пришёлся по душе благодаря наличию простейших фраз, отражению команд на мониторе и наличию инструкций, не нуждающихся в дополнительных разъяснениях.

    Спустя 4 года (1965 год ) был запущен искусственный интеллект « Dendral ». Задача системы заключалась в выявлении молекулярной и атомной структуре соединений органического происхождения. Для написания был использован LISP .

    «Weizenbaum » в 1966 году запустил проект Элиза, который впервые предполагал проведение беседы с роботом. Самой известной моделью являлся «Доктор», который позволял отвечать на поставленные запросы в форме психотерапевта. Для реализации проекта потребовалось сопоставление нескольких образцов технического достижения своего времени. Впервые Элиза увидел мир на SPLIP, но для отработки списка запущен «Weizenbaum». Немногим позже проект переработан на другую платформу — LISP .

    Первым роботом мобильного типа стал «Шеки », в его основе также лежал ЛИСП. Логика конструктора была построена на решении поставленных задач и передвижения, для взаимодействия использовались подъёмы вверх и вниз, а также включение и выключение света. С помощью «Шеки » удавалось открывать, закрывать, передвигать и т.д. Робот даже был способен передвигаться со скоростью равной спокойной ходьбе человека — 5 км/ч.

    За последние 15 лет было представлено многочисленное количество изобретений: «Деннинг » (сторожевой робот), «Predator » (беспилотник), «АЙБО » (собака), «АСИМО » от Honda и многие другие. Тенденция идёт к развитию данного направления, чего и стоит ожидать в ближайшем и дальнем бедующем.

    Пока программисты могут зарабатывать программированием, то существующие ИИ это не ИИ, какой бы фантик на них не был бы навешен. Предлагаемый мной вариант может решить этот вопрос.

    В результате своих изысканий я перестал для себя использовать фразу «искусственный интеллект» как слишком неопределенную и пришел к другой формулировке: алгоритм самостоятельного обучения, исследования и применения найденных результатов для решения любых возможных к реализации задач.

    Что такое ИИ, об этом уже много было написано. Я ставлю вопрос по другому, не «что такое ИИ», а «зачем нужен ИИ». Мне он нужен, что бы заработать много денег, затем что бы компьютер выполнял за меня все, что я сам не хочу делать, после построить космический корабль и улететь к звездам.

    Вот и буду здесь описывать, как заставить компьютер выполнять наши желания. Если вы ожидаете здесь увидеть описание или упоминание, как работает сознание, что такое самосознание, что значит думать или рассуждать — то это не сюда. Думать — это не про компьютеры. Компьютеры рассчитывают, вычисляют и выполняют программы. Вот и подумаем, как сделать программу, способную рассчитать необходимую последовательность действий для реализации наших желаний.

    В каком виде в компьютер попадет наша задача — через клавиатуру, через микрофон, или с датчиков вживленных в мозг — это не важно, это дело вторичное. Если мы сможем компьютер заставить выполнять желания написанные текстом, то после мы можем поставить ему задачу, что бы он сделал программу, которая так же выполняет желания, но через микрофон. Анализ изображений так же лишний.

    Утверждать, что для того, что бы создаваемый ИИ мог распознавать изображения и звук, в него изначально должны быть включены такие алгоритмы, это все равно что утверждать, что всякий человек, который таковые создал, от рождения знали как работают такие программы.

    Сформулируем аксиомы:
    1. Все в мире можно посчитать по каким-нибудь правилам. (про погрешности позже)
    2. Расчет по правилу, это однозначная зависимость результата от исходных данных.
    3. Любые однозначные зависимости можно находить статистически.
    А теперь утверждения:
    4. Существует функция преобразования текстовых описаний в правила — что бы не нужно было искать уже давно найденные знания.
    5. Существует функция преобразования задач в решения (это исполнялка наших желаний).
    6. Правило прогнозирования произвольных данных включает в себя все остальные правила и функции.

    Переведем это на язык программиста:
    1. Все в мире можно посчитать по каким-нибудь алгоритмам.
    2. Алгоритм всегда при повторении исходных данных дает одинаковый результат.
    3. При наличии множества примеров исходных данных и к ним результатов, при бесконечном времени поиска можно найти все множество возможных алгоритмов, реализующих эту зависимость исходных данных и результата.
    4. Существует алгоритмы конвертации текстовых описаний в алгоритмы (или любых других информационных данных) — чтобы не искать потребные алгоритмы статистически, если их уже кто-то когда-то нашел и описал.
    5. Можно создать программу, которая будет исполнять наши желания, будь они в текстовом или голосовом виде, при условии, что эти желания реализуемы физически и в потребные рамки времени.
    6. Если умудриться создать программу, которая умеет прогнозировать и учиться прогнозированию по мере поступления новых данных, то по истечении бесконечного времени такая программа будет включать все возможные в нашем мире алгоритмы. Ну а при не бесконечном времени для практической пользы и с некоторой погрешностью ее можно заставить выполнять алгоритмы программы п.5 или любые другие.

    И еще, ИМХО:
    7. Другого способа полностью самостоятельного и независимого от человека обучения, кроме как поиска перебором правил и статистической проверки их на прогнозировании, не существует. И нужно только научиться использовать это свойство. Это свойство является частью работы мозга.

    Что нужно прогнозировать. В человеческий мозг от рождения начинает поступать поток информации — от глаз, ушей, тактильные и пр. И все решения принимаются им на основании ранее поступивших данных. По аналогии, делаем программу, у которой есть вход новой информации по одному байту — входной побайтовый поток. Все что поступило ранее, представляется в виде одного сплошного списка. От 0 до 255 будет поступать внешняя информация, и свыше 255 будем использовать как специальные управляющие маркеры. Т.е. вход позволяет записать скажем до 0xFFFF размерность числа. И именно этот поток, а точнее очередное добавляемое число информации и нужно научиться прогнозировать, на основании поступавших до этого данных. Т.е. программа должна пытаться угадать, какое будет добавлено следующее число.

    Конечно возможны и другие варианты представления данных, но для целей, когда на вход поступают самые различные форматы, попросту туда по началу запихиваем различные html с описаниями, этот наиболее оптимальный. Хотя маркеры можно заменить на эскейп последовательности в целях оптимизации, но объяснять с ними менее удобно. (А так же, представим, что все в ASCII, а не UTF).

    Итак, сначала как и при рождении, пихаем туда все подряд интернет-страницы с описаниями и разделяем их маркером нового текста — — что бы этот черный ящик учился всему подряд. Маркеры я буду обозначать тегами, но подразумевается, что они просто какое-то уникальное число. По прошествии некоторого объема данных, начинаем манипулировать входящей информацией с помощью управляющих маркеров.

    Под прогнозированием я понимаю такой алгоритм, который знает не только какие закономерности уже были, но и ищет постоянно новые. И потому если на вход такой программе послать последовательность
    небосиние
    травазеленная
    потолок…
    , то он должен сообразить, что за маркером следует цвет от указанного ранее объекта, и на месте многоточия спрогнозирует наиболее вероятный цвет потолка.

    Мы ему несколько примеров повторили, что бы он понял которую функцию нужно применить в пределах этих тегов. А сам цвет, он конечно же не выдумать должен, а должен его уже знать самостоятельно изучив вычисляя закономерности на прогнозировании.

    Когда от алгоритма требуется ответ, то на вход последующих шагов подается то, что было прогнозом предыдущего шага. Типа автопрогнозирование (по аналогии со словом автокорреляция). И при этом отключаем функцию поиска новых последовательностей.

    Другой пример, можно после первого маркера указывать вопрос, а во втором ответ, и тогда будь этот алгоритм супер-мега-крутым, он должен начать давать ответы даже на самые сложные вопросы. Опять же, в пределах уже изученных фактов.

    Можно много придумать разных трюков с управляющими маркерами, поданными на вход прогнозирующего механизма, и получать любые желаемые функции. Если вам будет скучно читать про алгоритмическое обоснование этого свойства, то можно пролистать до следующих примеров с управляющими маркерами.

    Из чего состоит этот черный ящик. Во первых стоит упомянуть, что стопроцентного прогнозирования всегда и во всех ситуациях сделать не возможно. С другой стороны, если как результат всегда выдавать число ноль, то это то же будет прогнозом. Хоть и с абсолютно стопроцентной погрешностью. А теперь посчитаем, с какой вероятностью, за каким числом, какое дальше следует число. Для каждого числа определится наиболее вероятное следующее. Т.е. мы его сможем немножко спрогнозировать. Это первый шаг очень длинного пути.

    Однозначное отображение исходных данных на результат по алгоритму, это соответствует математическому определению слова функция , за исключением того, что к определению алгоритма не налагается определенность в количестве и размещении входных и выходных данных. Так же пример, пусть будет маленькая табличка: объект-цвет, в нее занесем множество строк: небо-синее, трава-зеленная, потолок-белый. Это получилась маленькая локальная функция однозначного отображения. И не важно, что в действительности не редко цвета не такие — там будут другие свои таблицы. И любая база данных, содержащая запомненные свойства чего-либо, является множеством функций, и отображает идентификаторы объектов на их свойства.

    Для упрощения, дальше во многих ситуациях, вместо термина алгоритм, я буду употреблять термин функция, типа однопараметрическая, если другого не указано. И всякие такие упоминания, нужно в голове подразумевать расширяемость до алгоритмов.

    И описание буду давать примерное, т.к. в реальности реализовать все это я пока… Но оно все логично. А так же следует учитывать, что все расчеты ведутся коэффициентами, а не истина или ложь. (возможно даже если явно указано что истина и ложь).

    Любой алгоритм, в особенности который оперирует целыми числами, может быть разложен на множество условий и переходов между ними. Операции сложения, умножения, и пр. так же раскладываются на подалгоритмики из условий и переходов. И еще оператор результата. Это не оператор возврата. Оператор условия берет откуда-то значение и сравнивает его с константным. А оператор результата складывает куда-нибудь константное значение. Расположение взятия или складывания вычисляется относительно либо базовой точки, либо относительно прежних шагов алгоритма.

    Struct t_node < int type; // 0 - условие, 1 - результат union < struct < // оператор условия t_node* source_get; t_value* compare_value; t_node* next_if_then; t_node* next_if_else; >; struct < // оператор результата t_node* dest_set; t_value* result_value; >; > >;
    На вскидку, что то вроде этого. И из таких элементов и строится алгоритм. В результате всех рассуждений получится более сложная структура, а эта для начального представления.

    Каждая прогнозируемая точка рассчитывается по какой-то функции. К функции прилагается условие, которое тестирует на применимость этой функции к этой точке. Общая сцепка возвращает, либо ложь — не применимость, либо результат расчета функции. А непрерывное прогнозирование потока, это поочередная проверка применимости всех уже придуманных функции и их расчет, если истина. И так для каждой точки.

    Кроме условия на применимость, есть еще дистанции. Между исходными данными, и результатными, и эта дистанция бывает различной, при одной и той же функции, применяемой в зависимости от условия. (И от условия до исходной или прогнозируемой то же есть дистанция, ее будем подразумевать, но опускать при объяснениях. И дистанции бывают динамическими).

    При накоплении большого числа функций, будет возрастать количество условий, тестирующих применимость этих функций. Но, эти условия во многих случаях возможно располагать в виде деревьев, и отсечение множеств функций будет происходить пропорционально логарифмической зависимости.

    Когда идет начальное создание и замер функции, то вместо оператора результата, идет накопление распределения фактических результатов. После накопления статистики, распределение заменяем на наиболее вероятный результат, и функцию предваряем условием, так же протестировав условие на максимальность вероятности результата.

    Это идет поиск одиночных фактов корреляции. Накопив кучу таких одиночных, пытаемся объединить их в группы. Смотрим, из которых можно выделить общее условие и общую дистанцию от исходного значения к результату. А так же, проверяем, что при таких условиях и дистанциях, в других случаях, где идет повторение исходного значения, не идет широкое распределение результатного. Т.е. в известных частых употреблениях, оно высокотождественно.

    Коэффициент тождественности. (Здесь двунаправленная тождественность. Но чаще она однонаправленная. Позже переобдумаю формулу.)
    Количество каждой пары XY в квадрат и суммируем.
    Делим на: сумма количеств в квадрате каждого значения X плюс сумма количеств в квадрате Y минус делимое.
    Т.е. SUM(XY^2) / (SUM(X^2) + SUM(Y^2) — SUM(XY^2)).
    Этот коэффициент от 0 до 1.

    И в результате, что происходит. Мы на высокочастотных фактах убедились, что при этих условии и дистанции, эти факты однозначны. А остальные редковстречаемые — но суммарно таких будет гораздо больше чем частых — имеют ту же погрешность, что и частовстреченные факты в этих условиях. Т.е. мы можем накапливать базу прогнозирования на единично встречаемых фактах в этих условиях.

    Да будет база знаний. Небо часто синее, а тропическая-редкая-фигня где-то увидели что она серо-буро-малиновая. И запомнили, т.к. правило мы проверили — оно надежное. И принцип не зависит от языка, будь то китайский или инопланетный. А позже, после понимания правил переводов, можно будет сообразить, что одна функция может собираться из разных языков. При этом нужно учесть, что базу знаний так же можно представить в виде алгоритмов — если исходное значение такое-то, то результатное такое-то.

    Дальше, мы в следствии перебора других правил, находим, что при других расположении и условии, возникает уже виденная тождественность. Причем теперь нам не обязательно набирать большую базу для подтверждения тождественности, достаточно набрать десяток единичных фактов, и увидеть, что в пределах этого десятка, отображение происходит в те же значения, как и у прежней функции. Т.е. та же функция используется в других условиях. Это свойство образует то, что мы в описании разными выражениями можем описывать одно и то же свойство. А порой их просто перечислять в таблицах на интернет-страницах. И дальше, сбор фактов по этой функции можно производить уже по нескольким вариантам использования.

    Происходит накопление возможных различных условий и расположений относительно функций, и на них так же можно пытаться находить закономерности. Не редко, правила выборки подобны для различных функций, отличаясь только каким-нибудь признаком (например слово идентифицирующее свойство или заголовок в таблице).

    В общем понаходили мы кучку однопараметрических функций. А теперь, как при образовании из одиночных фактов в однопараметрические, так же и здесь, попытаемся сгруппировать однопараметрические по части условия и части дистанции. Та часть, что общая — новое условие, а та, что различается — это второй параметр новой функции — двухпараметрической, где первым параметром будет параметр однопараметрической.

    Получается, что каждый новый параметр у многопараметрических находится с той же линейностью, что и образование из единичных фактов в однопараметрические (ну или почти с той же). Т.е. нахождение N-параметрической пропорционально N. Что в стремлении к очень много параметрам становится почти нейронной сеткой. (Кто захочет, тот поймет.)

    Конечно замечательно, когда нам предоставили множество корреспондирующих примеров, скажем маленьких текстов перевода с русского на английский. И можно начинать пытаться находить между ними закономерности. Но в действительности, оно все перемешано во входном потоке информации.

    Вот мы взяли нашли одну какую-то функцию, и путь между данными. Вторую и третью. Теперь смотрим, можем ли среди них, у каких-либо найти у путей общую часть. Попытаться найти структуры X-P1-(P2)-P3-Y. А потом, найти еще другие подобные структуры, с подобными X-P1 и P3-Y, но различающимися P2. И тогда мы можем заключить, что имеем дело со сложной структурой, между которыми существуют зависимости. А множество найденных правил, за вычетом серединной части, объединим в групп и назовем конвертационной функцией. Таким образом образуются функции перевода, компиляции, и прочие сложные сущности.

    Вот возьмите лист с русским текстом, и с его переводом на незнакомый язык. Без самоучителя чрезвычайно сложно из этих листов найти понимание правил перевода. Но это возможно. И примерно так же, как это делали бы вы, это нужно оформить в поисковый алгоритм.

    Когда разберусь с простыми функциями, тогда и буду дальше обмусоливать конвертационный поиск, пока сойдет и набросок, и понимание что это то же возможно.

    Кроме статистического поиска функций, еще можно их формировать из описаний, посредством конвертационной функции в правила — читающая функция. Статистику для изначального создания читающей функции можно в избытке найти в интернете в учебниках — корреляции между описаниями и правилами примененными к примерам в тех описаниях. Т.е. получается, что алгоритм поиска должен одинаково видеть и исходные данные, и правила примененные к ним, т.е. все должно располагаться в неком однородном по типам доступов графе данных. Из такого же принципа только обратном, могут находиться правила для обратной конвертации внутренних правил во внешние описания или внешние программы. А так же формировать понимание системы, что она знает, а чего нет — можно перед затребованием ответа, поинтересоваться, а знает ли система ответ — да или нет.

    Функции о которых я говорил, на самом деле не просто находимый единый кусок алгоритма, а могут состоять из последовательности других функций. Что в свою очередь не вызов процедуры, а последовательность преобразований, типа как в linux работа с pipe. Для примера, я грубо описывал прогнозирование сразу слов и фраз. Но что бы получить прогноз только символа, к этой фразе нужно применить функцию взятия этого одного символа. Или функция научилась понимать задачи на английском, а ТЗ на русском. Тогда РусскоеТЗ->ПеревестиНаАнглийский->ВыполнитьТЗнаАнглийском->Результат.

    Функции могут быть не фиксированными в определении, и доопределяться или переопределяться по мере поступления дополнительной информации или при вообще изменении условий — функция перевода не конечная, и к тому же может меняться со временем.

    Так же на оценку вероятностей влияет повторяемость одного множества в разных функциях — образует или подтверждает типы.

    Так же нужно упомянуть, что не мало множеств реального мира, а не интернет-страниц, являются упорядоченными и возможно непрерывными, или с прочими характеристиками множеств, что как-то то же улучшает расчеты вероятностей.

    Кроме непосредственного замера найденного правила на примерах, предполагаю существование других способов оценки, что то типа классификатора правил. А возможно и классификатора этих классификаторов.

    Еще нюансы. Прогнозирование состоит из двух уровней. Уровень найденных правил и уровень поиска новых правил. Но поиск новых правил по сути то же программа со своими критериями. И допускаю (хотя пока не продумывал), что может быть все проще. Что нужен нулевой уровень, который будет искать возможные алгоритмы поиска во всем их многообразии, которые уже в свою очередь будут создавать конечные правила. А может быть это вообще многоуровневая рекурсия или фрактал.

    Вернемся к управляющим маркерам. В результате всех этих рассуждений про алгоритм получается, что через них мы запрашиваем от этого черного ящика продолжить последовательность, и выдать расчет по функции определяемой по подобию. Типа сделать так, как было показано до этого.

    Есть другой способ определения функции в этом механизме — выдать функцию через определение. Например:
    Перевести на английский

    стол table
    Ответить на вопрос

    цвет неба синий
    Создать программу по ТЗ

    хочу искусственный интеллект .

    Использование этой системы для решения наших задач состоит в следующем алгоритме. Делаем описание определения специального идентификатора для описания задач. Потом, создаем описание задачи и присваиваем ей новый идентификатор. Делаем описание допустимых действий. К примеру (хоть и не практично) непосредственно команды процессора — описания из интернета, а к компьютеру подключены манипуляторы, которыми через порты можно управлять. И после, мы у системы можем спрашивать, какое нужно выполнить следующее действие, для приближения задачи к решению, ссылаясь на задачу по идентификатору. А так же через раз спрашивать, не нужно ли какой дополнительно информации необходимой для дальнейшего расчета действий — информации по общим знаниям или по текущему состоянию решения задачи. И зацикливаем запросы действий и запросы информации в какой-нибудь внешний цикл. Вся эта схема строится на текстовых определениях, и потому может быть запущена посредством функций получаемых по определению. А выход — только лишь команды — отпадает вопрос многовероятности текстов. Вопрос масштабов необходимого прогнозирования сейчас не обсуждается — если будет необходимый и достаточный функционал прогнозирования — по логике оно должно работать.

    Если кто в ИИ видит не способ решения задач, а какие-либо характеристики человека, то можно сказать, что человеческое поведение и качества так же являются расчетными и прогнозируемыми. И в литературе есть достаточно описаний того или иного свойства. И потому, если в системе мы опишем, которое из свойств хотим, то она в меру знаний будет его эмулировать. И будет воспроизводить либо абстрактное усредненное поведение, либо со ссылкой на конкретную личность. Ну или если хотите, можно попробовать запустить сверхразум — если дадите этому определение.

    Прогнозировать можно что-то, что происходит по истечению какого-то времени. Объекты движутся со скоростями и ускорениями, и всякие другие возможные изменения чего-либо со временем. Прогнозировать можно и пространство. Для примера, вы заходите в незнакомую комнату, в которой стоит стол, у которого один из углов накрыт листом бумаги. Вы это угол не видите, но мыслено можете спрогнозировать, что он вероятней всего такой же прямоугольный, как и другие углы (а не закругленный), и цвет этого угла такой же как и у других углов. Конечно, прогнозирование пространства происходит с погрешностями — вдруг тот угол стола обгрызенный, и на нем пятно краски. Но и прогнозирование временных процессов тоже всегда с погрешностями. Ускорение свободного падения на земле не всегда 9.81, а зависит от высоты над уровнем моря, и от рядом стоящих гор. И измерительные приборы вы никогда не сможете сделать абсолютно точными. Т.е. прогнозирование пространства и процессов во времени всегда происходит с погрешностями, и у различных прогнозируемых сущностей различные погрешности. Но суть одинакова — алгоритмы, находимые статистически.

    Получается, что прогнозирование нашего байтового потока, это вроде прогнозирование пространства информации. В нем кодируются и пространство и время. Вот встречается там какая-то структура — пусть будет кусок программы. Этот кусок программы — это прогнозируемое пространство, такое же как и стол. Набор правил прогнозирования этой структуры образуют правила этой структуры — что-то вроде регулярных выражений. Для определения структуры этих структур вычисляется прогнозирование не одиночного значения, а множества допустимых значений. На момент описания алгоритма, про отдельность роли структур в нем я еще не осознавал, и потому туда это не попало. Но добавив это свойство, образуется полное понимание картинки, и со временем попробую переписать. Учтите, что под структурами подразумеваются условно расширяемые — если такое-то свойство имеет такое-то значение, значит добавляется еще пачка свойств.

    В целом, все что возможно в нашем мире, описывается типами, структурами, конвертациями и процессами. И все эти свойства подчиняются правилам, которые находятся в результате прогнозирования. Мозг делает тоже самое, только не точными методами, т.к. он аналоговое устройство.

    Будет ли он искать исследования целенаправленно без постановки такой задачи? Нет, потому что у него нету собственных желаний, а только поставленные задачи. То, что у нас отвечает за реализацию собственных желаний и интересов, это у нас называется личность. Можно и у компьютера запрограммировать личность. И будет ли она подобна человеческой, или какой-то компьютерный аналог — но это все равно останется всего лишь поставленной задачей.

    А наша творческая деятельность в искусстве, это те же исследования, только ищутся сущности, затрагивающие наши эмоции, чувства и разум.

    Окончательной инструкции по изготовлению такой программы пока нету. Вопросов остается много, и про сам алгоритм, и про использование (и про многовариантность текстов). Со временем буду дальше уточнять и детализировать описание.

    Альтернативным направлением реализации прогнозирования является использование рекуррентных нейронных сетей (скажем сеть Элмана). В этом направлении не нужно задумываться о природе прогнозирования, но там множество своих трудностей и нюансов. Но если это направление реализовать, то остальное использование остается прежним.

    Выводы по статье:
    1. Прогнозирование является способом находить все возможные алгоритмы.
    2. С помощью манипуляции входом прогнозирования можно эти алгоритмы от туда вытаскивать.
    3. Это свойство можно использовать, что бы разговаривать с компьютером.
    4. Это свойство можно использовать, что бы решать любые задачи.
    5. ИИ будет тем, как вы его определите, и после определения его можно решить как задачу.

    Некоторые скажут, что брутфорсом найти какую-либо закономерность будет чрезмерно долго. В противовес этому могу сказать, что ребенок учится говорить несколько лет. Сколько вариантов мы сможем просчитать за несколько лет? Найденные и готовые правила применяются быстро, и для компьютеров гораздо быстрей чем у человека. А вот поиск новых и там и там долго, но будет ли компьютер дольше человека, этого мы не узнаем, пока не сделаем такой алгоритм. Так же, замечу, что брутфорс великолепно распараллеливается, и найдутся миллионы энтузиастов, которые включат свои домашние ПК для этой цели. И получиться, что эти несколько лет, еще можно поделить на миллион. А найденные правила другими компьютерами будут изучаться моментально, в отличие от аналогичного процесса у человека.

    Другие начнут утверждать, что в мозге биллионы клеток нацеленных на распараллеливание. Тогда вопрос, каким образом задействуются эти биллионы при попытке без учебника на примерах изучить иностранный язык? Человек будет долго сидеть над распечатками и выписывать коррелирующие слова. В то же время, один компьютер это будет пачками делать за доли секунды.

    И анализ изображений — двинте десяток бильярдных шаров и посчитайте сколько будет столкновений. (закрывшись от звука). А два десятка или три… И причем здесь биллионы клеток?

    В общем, быстродействие мозга и его многопараллельность — это очень спорный вопрос.

    Когда вы думаете о создании думающего компьютера, вы копируете в него то, чему человек научился в течении жизни, и не пытаетесь понять, а каковы механизмы, позволяющие это накопить от стартовой программы — пожрать и поспать. И эти механизмы основываются отнюдь не на аксиомах формальной логики. Но на математике и статистике.

    PPS: мое мнение, что научного определения термина «Искусственный интеллект» не существует. Существует только научно-фантастическое. А если нужна реальность, то см. п.5 в выводах по статье.

    PPPS: Я много разных интерпретаций понял гораздо позже уже после написания статьи. Скажем, что поиск зависимости вопрос-ответ является аппроксимацией. Или каковы более точные научные определения вытаскивания нужной функции из многообразия найденных в процессе поиска функций прогнозирования. На каждый маленький момент понимания нельзя написать отдельную статью, а на все в общем нельзя, потому что не объединить в один заголовок. И все эти понимания, дают ответ, как получать от компьютерных вычислительных мощностей ответы на задаваемые вопросы, ответы на которые не всегда можно прочитать в существующих описаниях, как скажем для проекта Watson. Как создать программу, которая по одному упоминанию, или движению пальца, пытается понять и сделать то, что от нее хотят.

    Когда нибудь такая программа будет сделана. И назовут ее очередным гаджетом. А не ИИ.

    ****
    Исходники по этой теме, а так же дальнейшее развитие представления можете найти на сайте

    «Хочу заниматься ИИ. Что стоит изучить? Какие языки использовать? В каких организациях учиться и работать?»

    Мы обратились за разъяснением к нашим экспертам, а полученные ответы представляем вашему вниманию.

    Это зависит от Вашей базовой подготовки. Прежде всего, необходима математическая культура (знание статистики, теории вероятностей, дискретной математики, линейной алгебры, анализа и др.) и готовность многому быстро учиться. При реализации методов ИИ потребуется программирование (алгоритмы, структуры данных, ООП и др.).

    Разные проекты требуют владения разными языками программирования. Я бы рекомендовал знать как минимум Python, Java и любой функциональный язык. Нелишним будет опыт работы с различными базами данных и распределёнными системами. Чтобы быстро изучать лучшие подходы, применяемые в индустрии, требуется знание английского языка.

    Учиться рекомендую в хороших российских вузах! Например, в МФТИ, МГУ, ВШЭ есть соответствующие кафедры. Большое разнообразие тематических курсов доступно на Coursera, edX, Udacity, Udemy и других MOOC площадках. Некоторые ведущие организации имеют собственные программы подготовки в области ИИ (например, Школа анализа данных у Яндекса).

    Прикладные задачи, решаемые методами ИИ, можно найти в самых разнообразных местах. Банки, финансовый сектор, консалтинг, ритейл, e-commerce, поисковые системы, почтовые сервисы, игровая индустрия, индустрия систем безопасности и, конечно, Avito — все нуждаются в специалистах различной квалификации.

    У нас есть проект по финтеху, связанный с машинным обучением и компьютерным зрением, в котором первый его разработчик писал все на C++, далее пришел разработчик, который все переписал на Python. Так что язык тут не самое главное, так как язык — это прежде всего инструмент, и от вас зависит, как его использовать. Просто на каких-то языках задачи решать быстрее, а на других более медленно.

    Где учиться, сказать сложно — все наши ребята учились сами, благо есть интернет и Google.

    Могу посоветовать с самого начала готовить себя к тому, что учиться придётся много. Вне зависимости от того, что подразумевается под «заниматься ИИ» — работа с большими данными либо нейросети; развитие технологии или поддержка и обучение некой определённой уже разработанной системы.

    Давайте ради конкретики возьмём трендовую профессию Data Scientist. Что делает этот человек? В общем и целом — собирает, анализирует и готовит к употреблению большие данные. Именно те, на которых растёт и тренируется ИИ. А что должен знать и уметь Data Scientist? Статический анализ и математическое моделирование – по умолчанию, причём на уровне свободного владения. Языки – скажем, R, SAS, Python. Также хорошо бы иметь какой-никакой опыт разработки. Ну и, вообще говоря, хороший дата-сайнтист должен уверенно себя чувствовать в БД, алгоритмике, визуализации данных.

    Не сказать, чтобы такой набор знаний можно было получить в каждом втором техническом вузе страны. Крупные компании, у которых в приоритете разработка ИИ, это понимают и разрабатывают под себя соответствующие учебные программы — существует, например, Школа анализа данных от Яндекса. Но вы должны отдавать себе отчёт, что это не тот масштаб, где ты приходишь на курсы «с улицы», а выходишь с них готовым джуниором. Пласт большой, и идти учиться по дисциплине имеет смысл тогда, когда уже охвачена база (математика, статистика) хотя бы в рамках вузовской программы.

    Да, времени уйдёт порядочно. Но игра стоит свеч, потому что хороший Data Scientist – это очень перспективно. И очень дорого. Есть ещё и другой момент. Искусственный интеллект – это, с одной стороны, уже не просто объект ажиотажа, а вполне себе вышедшая на виток продуктивности технология. С другой стороны, ИИ всё ещё только развивается. Для этого развития требуется много ресурсов, много навыков и много денег. Пока это уровень высшей лиги. Я сейчас скажу очевидную вещь, но, если вы хотите оказаться на острие атаки и своими руками двигать прогресс, цельтесь в компании уровня Facebook или Amazon.

    В то же время в ряде областей технологию уже применяют: в банковской сфере, в телекоме, на промышленных предприятиях-гигантах, в ритейле. И там уже нужны люди, способные её поддерживать. Gartner прогнозирует, что к 2020 году 20% всех предприятий в развитых странах будут нанимать специальных сотрудников для тренировки нейронных сетей, используемых в этих компаниях. Так что пока ещё есть немного времени, чтобы подучиться самому.

    ИИ сейчас активно развивается, и предсказывать на десять лет вперед сложно. На ближайшие два-три года будут доминировать подходы на базе нейросетей и вычислений на основе GPU. Лидером в этой области является Python с интерактивной средой Jupyter и библиотеками numpy, scipy, tensorflow.

    Есть много онлайн-курсов, которые дают базовое представление об этих технологиях и общих принципах ИИ, например курс Andrew Ng. И в плане обучения этой теме сейчас в России эффективнее всего самостоятельное обучение или в локальной группе по интересам (например, в Москве я знаю о существовании как минимум пары групп, где люди делятся опытом и знаниями).

    На сегодняшний день самая быстро прогрессирующая часть искусственного интеллекта — это, пожалуй, нейронные сети.
    Изучение нейросетей и ИИ стоит начать с освоения двух разделов математики — линейной алгебры и теории вероятности. Это обязательный минимум, незыблемые столпы искусственного интеллекта. Абитуриентам, желающим постичь основы ИИ, при выборе вуза, на мой взгляд, стоит обратить внимание на факультеты с сильной математической школой.

    Следующий шаг — изучение проблематики вопроса. Существует огромное количество литературы, как учебной, так и специальной. Большинство публикаций по теме искусственного интеллекта и нейросетей написаны на английском языке, однако русскоязычные материалы тоже публикуются. Полезную литературу можно найти, например, в общедоступной цифровой библиотеке arxiv.org .

    Если говорить о направлениях деятельности, то здесь можно выделить обучение прикладных нейронных сетей и разработку совершенно новых вариантов нейросетей. Яркий пример: существует такая очень востребованная сейчас специальность — «дата-сайентист» (Data Scientist). Это разработчики, которые, как правило, занимаются изучением и подготовкой неких наборов данных для обучения нейросетей в конкретных, прикладных областях. Резюмируя, подчеркну, что каждая специализация требует отдельного пути подготовки.

    Прежде чем приступать к узкопрофильным курсам, нужно изучить линейную алгебру и статистику. Погружение в ИИ я бы посоветовал начать с учебника «Машинное обучение. Наука и искусство построения алгоритмов, которые извлекают знания из данных», это неплохое пособие для начинающих. На Coursera стоит послушать вводные лекции К. Воронцова (подчеркну, что они требуют хорошего знания линейной алгебры) и курс «Machine Learning» Стэнфордского университета, который читает Andrew Ng, профессор и глава Baidu AI Group/Google Brain.

    Основная масса пишется на Python, потом идут R, Lua.

    Если говорить об учебных заведениях, лучше поступить на курсы при кафедрах прикладной математики и информатики, подходящие образовательные программы есть. Для проверки своих способностей можно принять участие в соревнованиях Kaggle, где предлагают свои кейсы крупные мировые бренды.

    В любом деле, прежде чем приступать к проектам, хорошо бы получить теоретический базис. Есть много мест, где можно получить формальную степень магистра по этому направлению, либо повысить свою квалификацию. Так, например, Сколтех предлагает магистерские программы по направлениям «Computational Science and Engineering» и «Data Science», куда входит курсы «Machine Learning» и «Natural Language Processing». Можно также упомянуть Институт Интеллектуальных Кибернетических систем НИЯУ МИФИ, Факультет вычислительной математики и кибернетики МГУ и Кафедру «Интеллектуальные системы» МФТИ.

    Если же формальное образование уже имеется, есть ряд курсов на различных платформах MOOC. Так, например, EDx.org предлагает курсы по искусственному интеллекту от Microsoft и Колумбийского университета, последний из которых предлагает микро-магистерскую программу за умеренные деньги. Хотелось бы особо отметить, что обычно сами знания вы можете получить и бесплатно, оплата идет только за сертификат, если он нужен для вашего резюме.

    Если же вы хотите «глубоко погрузиться» в тему, ряд компаний в Москве предлагает недельные интенсивы с практическими занятиями, и даже предлагают оборудование для экспериментов (например, newprolab.com), правда, цена таких курсов от нескольких десятков тысяч рублей.

    Из компаний, которые занимаются разработкой Искусственного Интеллекта, вы наверняка знаете Яндекс и Сбербанк, но есть и многие другие разных размеров. Например, на этой неделе Минобороны открыло в Анапе Военный инновационный технополис ЭРА, одной из тем которого является разработка ИИ для военных нужд.

    Прежде чем изучать искусственный интеллект, надо решить принципиальный вопрос: красную таблетку взять или синюю.
    Красная таблетка — стать разработчиком и окунуться в жестокий мир статистических методов, алгоритмов и постоянного постижения непознанного. С другой стороны, не обязательно сразу кидаться в «кроличью нору»: можно стать управленцем и создавать ИИ, например, как менеджер проекта. Это два принципиально разных пути.

    Первый отлично подходит, если вы уже решили, что будете писать алгоритмы искусственного интеллекта. Тогда вам надо начать с самого популярного направления на сегодняшний день – машинного обучения. Для этого нужно знать классические статистические методы классификации, кластеризации и регрессии. Полезно будет также познакомиться с основными мерами оценки качества решения, их свойствами… и всем, что попадется вам по пути.

    Только после того, как база освоена, стоит проштудировать более специальные методы: деревья принятия решений и ансамбли из них. На этом этапе нужно глубоко погрузиться в основные способы построения и обучения моделей — они скрываются за едва приличными словами беггинг, бустинг, стекинг или блендинг.

    Тут же стоит познать методы контроля переобучения моделей (еще один «инг» — overfitting).

    И, наконец, совсем уж джедайский уровень — получение узкоспециальных знаний. Например, для глубокого обучения потребуется овладеть основными архитектурами и алгоритмами градиентного спуска. Если интересны задачи обработки естественного языка, то рекомендую изучить рекуррентные нейронные сети. А будущим создателям алгоритмов для обработки картинок и видео стоит хорошенько углубиться в свёрточные нейронные сети.

    Две последние упомянутые структуры — кирпичики популярных сегодня архитектур: состязательных сетей (GAN), реляционных сетей, комбинированных сетей. Поэтому изучить их будет нелишним, даже если вы не планируете учить компьютер видеть или слышать.

    Совсем другой подход к изучению ИИ — он же «синяя таблетка» — начинается с поиска себя. Искусственный интеллект рождает кучу задач и целых профессий: от руководителей ИИ-проектов до дата-инженеров, способных готовить данные, чистить их и строить масштабируемые, нагруженные и отказоустойчивые системы.

    Так что при «менеджерском» подходе сначала стоит оценить свои способности и бэкграунд, а уже потом выбирать, где и чему учиться. Например, даже без математического склада ума можно заниматься дизайном ИИ-интерфейсов и визуализациями для умных алгоритмов. Но приготовьтесь: уже через 5 лет искусственный интеллект начнет вас троллить и называть «гуманитарием».

    Основные методы ML реализованы в виде готовых библиотек, доступных к подключению на разных языках. Наиболее популярными языками в ML сегодня являются: C++, Python и R.

    Есть множество курсов как на русском, так и английском языках, таких как Школа анализа данных Яндекса, курсы SkillFactory и OTUS. Но прежде чем инвестировать время и деньги в специализированное обучение, думаю, стоит «проникнуться темой»: посмотреть открытые лекции на YouTube с конференций DataFest за прошлые годы, пройти бесплатные курсы от Coursera и «Хабрахабра».

    И когда все описанные знания будут усвоены, мы с нетерпением ждем юных падаванов к нам в команду Navicon, где поможем и научим, как подружиться с «искусственными интеллектуалами» в реальной жизни.

    Тема ИИ и машинного обучения стала значительно более демократичной, чем несколько лет назад.
    В интернете можно найти платные и бесплатные курсы на эту тему, инструменты становятся более простыми и менее требовательными как к знаниям, так и к аппаратному обеспечению.

    Как опытным, так и начинающим программистам рекомендую начать с онлайн-курсов на MOOC-площадках. Например, на Coursera есть отличная специализация «Машинное обучение и анализ данных» от Яндекса и Высшей школы экономики. Если нет проблем с пониманием лекций на английском языке, там же можно пройти курс Эндрю Ына «Machine Learning».

    Основные языки программирования для работы в области ИИ и машинного обучения — R и Python. Долгое время эти языки использовались в академических кругах и для них было создано большое количество библиотек. Сейчас развиваются инструменты, позволяющие быстро стартовать свой проект: Keras, TensorFlow, Theano, Caffe, scikit-learn. Последнее время Microsoft начал активно развивать свои инструменты: CNTK, ML.NET. Они позволяют создавать интеллектуальные решения на языке C#.

    Найти работу, не имея практического опыта в сфере анализа данных и машинного обучения, сейчас довольно сложно. Но можно обучаться самостоятельно на онлайн-курсах, участвовать в соревнованиях на Kaggle и подобных платформах. Это позволит наработать портфолио, которое станет вашим конкурентным преимуществом при поиске работы.

    Экспертам, а мы соберём на него ответы, если он окажется интересным. Вопросы, которые уже задавались, можно найти в списке выпусков . Если вы хотите присоединиться к числу экспертов и прислать ответ от вашей компании или лично от вас, то пишите на , мы расскажем как это сделать.

    На этой неделе вы могли прочитать крайне мотивирующей кейс от ученика GeekBrains , который изучил профессию , где он рассказал об одной из своих целей, которая привела в профессию — желанию познать принцип работы и научиться создавать самому игровых ботов.

    А ведь действительно, именно желание создать совершенный искусственный интеллект, будь то игровая модель или мобильная программа, сподвигла на путь программиста многих из нас. Проблема в том, что за тоннами учебного материала и суровой действительностью заказчиков, это самое желание было заменено простым стремлением к саморазвитию. Для тех, кто так и не приступил к исполнению детской мечты, далее краткий путеводитель по созданию настоящего искусственного разума.

    Стадия 1. Разочарование

    Когда мы говорим о создании хотя бы простых ботов, глаза наполняются блеском, а в голове мелькают сотни идей, что он должен уметь делать. Однако, когда дело доходит до реализации, оказывается, что ключом к разгадке реальной модели поведения является математика. Да-да, искусственный интеллект куда сложнее написания прикладных программ — одних знаний о проектировании ПО вам не хватит.

    Математика — этот тот научный плацдарм, на котором будет строиться ваше дальнейшее программирование. Без знания и понимания этой теории все задумки быстро разобьются о взаимодействие с человеком, ведь искусственный разум на самом деле не больше, чем набор формул.

    Стадия 2. Принятие

    Когда спесь немного сбита студенческой литературой, можно приступать к практике. Бросаться на LISP или другие пока не стоит — сначала стоит освоиться с принципами проектирования ИИ. Как для быстрого изучения, так и дальнейшего развития прекрасно подойдёт Python — это язык, чаще всего используемый в научных целях, для него вы найдете множество библиотек, которые облегчат ваш труд.

    Стадия 3. Развитие

    Теперь переходим непосредственно к теории ИИ. Их условно можно разделить на 3 категории:

    • Слабый ИИ – боты, которых мы видим в компьютерных играх, или простые подручные помощники, вроде Siri. Они или выполняют узкоспециализированные задачи или являются незначительным комплексом таковых, а любая непредсказуемость взаимодействия ставит их в тупик.
    • Сильный ИИ – это машины, интеллект которых сопоставим с человеческим мозгом. На сегодняшний день нет реальных представителей этого класса, но компьютеры, вроде Watson очень близки к достижению этой цели.
    • Совершенные ИИ – будущее, машинный мозг, который превзойдёт наши возможности. Именно об опасности таких разработок предупреждают Стивен Хоккинг, Элон Маск и кинофраншиза «Терминатор».

    Естественно, начинать следует с самых простых ботов. Для этого вспомните старую-добрую игру «Крестики-нолики» при использовании поля 3х3 и постарайтесь выяснить для себя основные алгоритмы действий: вероятность победы при безошибочных действиях, наиболее удачные места на поле для расположения фигуры, необходимость сводить игру к ничьей и так далее.

    Несколько десятков партий и анализируя собственные действия, вы наверняка сможете выделить все важные аспекты и переписать их в машинный код. Если нет, то продолжайте думать, а эта ссылка здесь полежит на всякий случай.

    К слову, если вы всё-таки взялись за язык Python, то создать довольно простого бота можно, обратившись к этому подробному мануалу . Для других языков, таких как C++ или Java , вам также не составит труда найти пошаговые материалы. Почувствовав, что за созданием ИИ нет ничего сверхъестественного, вы сможете смело закрыть браузер и приступить к личным экспериментам.

    Стадия 4. Азарт

    Теперь, когда дело сдвинулось с мёртвой точки, вам наверняка хочется создать что-то более серьёзное. В этом вам поможет ряд следующих ресурсов:

    Как вы поняли даже из названий, это API, которые позволят без лишних затрат времени создать некоторое подобие серьёзного ИИ.

    Стадия 5. Работа

    Теперь же, когда вы уже вполне ясно представляете, как ИИ создавать и чем при этом пользоваться, пора выводить свои знания на новый уровень. Во-первых, для этого потребуется изучение дисциплины, которое носит название «Машинное обучение ». Во-вторых, необходимо научиться работать с соответствующими библиотеками выбранного языка программирования. Для рассматриваемого нами Python это Scikit-learn, NLTK, SciPy, PyBrain и Numpy. В-третьих, в развитии никуда не обойтись от . Ну и самое главное, вы теперь сможете читать литературу о ИИ с полным пониманием дела:

    • Artificial Intelligence for Games , Ян Миллингтон;
    • Game Programming Patterns , Роберт Найсторм;
    • AI Algorithms, Data Structures, and Idioms in Prolog, Lisp, and Java , Джордж Люгер, Уильям Стбалфилд;
    • Computational Cognitive Neuroscience , Рэнделл О’Рейли, Юко Мунаката;
    • Artificial Intelligence: A Modern Approach , Стюарт Рассел, Питер Норвиг.

    И да, вся или почти вся литература по данной тематике представлена на иностранном языке, поэтому если хотите заниматься созданием ИИ профессионально — необходимо подтянуть свой английский до технического уровня. Впрочем, это актуально для любой сферы программирования, не правда ли?

    Понимающие язык машины были бы очень полезны. Но мы не знаем, как их построить.

    Об иллюстрациях к статье: одной из трудностей понимания языка компьютерами является то обстоятельство, что часто значение слов зависит от контекста и даже от внешнего вида букв и слов. В приведённых в статье изображениях несколько художников демонстрируют использование различных визуальных намёков, передающих смысловую нагрузку, выходящую за пределы непосредственно самих букв.

    В разгар напряжённой игры в го, шедшей в Сеуле в Южной Корее между Ли Седолем, одним из лучших игроков всех времен, и программой AlphaGo, ИИ, созданным в Google, программа сделала загадочный ход, продемонстрировавший её вызывающее оторопь превосходство над человеческим соперником.

    На 37-м ходу AlphaGo решила положить чёрный камень в странную на первый взгляд позицию. Всё шло к тому, что она должна была потерять существенный кусок территории – ошибка начинающего в игре, построенной на контроле за пространством на доске. Два телекомментатора рассуждали о том, правильно ли они поняли ход компьютера и не сломался ли он. Оказалось, что, несмотря на противоречие здравому смыслу, 37-й ход позволил AlphaGo построить труднопреодолимую структуру в центре доски. Программа от Google по сути выиграла игру при помощи хода, до которого не додумался бы ни один из людей.

    Впечатляет ещё и потому, что древнюю игру го часто рассматривали как проверку на интуитивный интеллект. Правила её просты. Два игрока по очереди кладут чёрные или белые камни на пересечения горизонтальных и вертикальных линий доски, пытаясь окружить камни противника и удалить их с доски. Но хорошо играть в неё невероятно сложно.

    Если шахматисты способны просчитывать игру на несколько шагов вперёд, в го это быстро становится невообразимо сложной задачей, кроме того, в игре не существует классических гамбитов. Также нет простого способа измерения преимущества, и даже для опытного игрока может быть сложно объяснить, почему он сделал именно такой ход. Из-за этого невозможно написать простой набор правил, которому бы следовала программа, играющая на уровне эксперта.

    AlphaGo не учили играть в го. Программа анализировала сотни тысяч игр и играла миллионы матчей сама с собой. Среди различных ИИ-техник, она использовала набирающий популярность метод, известный, как глубокое обучение. В его основе — математические вычисления, метод которых вдохновлен тем, как связанные между собой слои нейронов в мозгу активируются при обработке новой информации. Программа учила сама себя за многие часы практики, постепенно оттачивая интуитивное чувство стратегии. И то, что она затем смогла выиграть у одного из лучших игроков го в мире, является новой вехой в машинном интеллекте и ИИ.

    Через несколько часов после 37-го хода AlphaGo выиграла игру и стала лидировать со счётом 2:0 в матче из пяти игр. После этого Седоль стоял перед толпой журналистов и фотографов и вежливо извинялся за то, что подвёл человечество. «Я потерял дар речи»,- говорил он, моргая под очередями фотовспышек.

    Удивительный успех AlphaGo показывает, какой прогресс был достигнут в ИИ за последние несколько лет, после десятилетий отчаяния и проблем, описываемых, как «зима ИИ». Глубокое обучение позволяет машинам самостоятельно обучаться тому, как выполнять сложные задачи, решение которых ещё несколько лет назад нельзя было представить без участия человеческого интеллекта. Робомобили уже маячат на горизонте. В ближайшем будущем системы, основанные на глубоком обучении, будут помогать с диагностикой заболеваний и выдачей рекомендаций по лечению.

    Но несмотря на эти впечатляющие подвижки одна из основных возможностей никак не даётся ИИ: язык. Системы вроде Siri и IBM Watson могут распознавать простые устные и письменные команды и отвечать на простые вопросы, но они не в состоянии поддерживать разговор или на самом деле понимать используемые слова. Чтобы ИИ изменил наш мир, это должно поменяться.

    Хотя AlphaGo не разговаривает, в нём есть технология, способная дать лучшее понимание языка. В компаниях Google, Facebook, Amazon и в научных лабораториях исследователи пытаются решить эту упрямую проблему, используя те же инструменты ИИ – включая глубокое обучение – что отвечают за успех AlphaGo и возрождение ИИ. Их успех определит масштабы и свойства того, что уже начинает превращаться в революцию ИИ. Это определит наше будущее – появятся ли у нас машины, с которыми будет легко общаться, или системы с ИИ останутся загадочными чёрными ящиками, пусть и более автономными. «Никак не получится сотворить человекоподобную систему с ИИ, если в её основе не будет заложен язык,- говорит Джош Тененбаум , профессор когнитивных наук и вычислений из MIT. – Это одна из самых очевидных вещей, определяющих человеческий интеллект».

    Возможно, те же самые технологии, что позволили AlphaGo покорить го, позволят и компьютерам освоить язык, или же потребуется что-то ещё. Но без понимания языка влияние ИИ будет другим. Конечно, у нас всё равно будут нереально мощные и интеллектуальные программы вроде AlphaGo. Но наши отношения с ИИ будут не такими тесными, и, вероятно, не такими дружественными. «Самым главным вопросом с начала исследований было „Что, если бы вы получили устройства, интеллектуальные с точки зрения эффективности, но не похожие на нас с точки зрения отсутствия сочувствия тому, кто мы есть?“ – говорит Терри Виноград , заслуженный профессор Стэнфордского университета. „Можно представить машины, основанные не на человеческом интеллекте, работающие с большими данными и управляющие миром“.

    Говорящие с машинами

    Я начал с Винограда, живущего в пригороде на южном краю Стэнфордского кампуса в Пало-Альто, недалеко от штаб-квартир Google, Facebook и Apple. Его кудрявые седые волосы и густые усы придают ему вид почтенного учёного, и он заражает своим энтузиазмом.

    В 1968 Виноград сделал одну из ранних попыток научить машины разговаривать. Будучи математическим вундеркиндом, увлечённым языком, он приехал в новую лабораторию MIT по изучению ИИ получать учёную степень. Он решил создать программу, общающуюся с людьми через текстовый ввод на повседневном языке. В то время это не казалось такой дерзкой целью. В разработке ИИ были сделаны очень большие шаги и другие команды в MIT строили сложные системы компьютерного зрения и роботизированных манипуляторов. „Было чувство неизвестных и неограниченных возможностей“,- вспоминает он.

    Но не все считали, что язык так легко покорить. Некоторые критики, включая влиятельного лингвиста и профессора MIT Ноама Хомски, считали, что исследователям ИИ будет очень сложно научить машины пониманию, поскольку механика языка у людей была очень плохо изучена. Виноград вспоминает вечеринку, на которой студент Хомски отошёл от него после того, как услышал, что он работает в лаборатории ИИ.

    Но есть причины и для оптимизма. Джозеф Вейзенбаум , профессор MIT немецкого происхождения, пару лет назад сделал первую программу-чатбота. Её звали ELIZA и она была запрограммирована отвечать так, как психолог из мультиков, повторяя ключевые части утверждений или задавая вопросы, вдохновляющие на продолжение разговора. Если вы сообщали ей, что злитесь на мать, программа могла бы ответить „А что ещё приходит вам в голову, когда вы думаете о своей матери?“. Дешёвый трюк, который работал на удивление хорошо. Вейзенбаум был шокирован, когда некоторые испытуемые стали поверять свои тёмные секреты его машине.

    Виноград хотел сделать нечто, что могло бы убедительно делать вид, что понимает язык. Он начал с уменьшения области действия проблемы. Он создал простое виртуальное окружение, „блочный мир“, состоящий из набора вымышленных объектов на вымышленном столе. Затем он создал программу, назвав её SHRDLU, способную разобрать все существительные, глаголы и простые правила грамматики, необходимые для общения в этом упрощённом виртуальном мире. SHRDLU (бессмысленное слово, составленное из стоящих в ряд букв клавиатуры линотипа) могла описывать предметы, отвечать на вопросы об их взаимоотношениях и изменять блочный мир в ответ на вводимые команды. У неё даже была некая память и если вы просили её передвинуть „красный конус“, а затем писали про некий конус, она предполагала, что вы имеете в виду этот красный конус, а не какой-либо другой.

    SHRDLU стал знаменем того, что в области ИИ наметился огромный прогресс. Но это была всего лишь иллюзия. Когда Виноград попытался расширить блочный мир программы, правила, необходимые для учёта дополнительных слов и сложности грамматики стали неуправляемыми. Всего лишь через несколько лет он сдался и оставил область ИИ, сконцентрировавшись на других исследованиях. „Ограничения оказались гораздо сильнее, чем тогда казалось“,- говорит он.

    Виноград решил, что при помощи доступных в то время инструментов невозможно научить машину по-настоящему понимать язык. Проблема, по мнению Хьюберта Дрейфуса , профессора философии в Калифорнийском университете в Беркли, высказанному им в книге 1972 года „Чего компьютеры не могут“ , в том, что множество человеческих действий требуют инстинктивного понимания, которое невозможно задать набором простых правил. Именно поэтому до начала матча между Седолом и AlphaGo многие эксперты сомневались, что машины смогут овладеть игрой го.

    Но в то время, как Дрейфус доказывал свою точку зрения, несколько исследователей разрабатывали подход, который, в конце концов, даст машинам интеллект нужного вида. Вдохновляясь нейрологией, они экспериментировали с искусственными нейросетями – слоями математических симуляций нейронов, которые можно обучить активироваться в ответ на определённые входные данные. В начале эти системы работали невозможно медленно и подход был отвергнут как непрактичный для логики и рассуждений. Однако ключевой возможностью нейросетей была способность обучиться тому, что не было запрограммировано вручную, и позже она оказалась полезной для простых задач типа распознавания рукописного текста. Это умение нашло коммерческое применение в 1990-х для считывания чисел с чеков. Сторонники метода были уверены, что со временем нейросети позволят машинам делать гораздо больше. Они утверждали, что когда-нибудь эта технология поможет и распознавать язык.

    За последние несколько лет нейросети стали более сложными и мощными. Подход процветал благодаря ключевым математическим улучшениям, и, что более важно, более быстрому компьютерному железу и появлению огромного количества данных. К 2009 году исследователи из Университета Торонто показали, что многослойные сети глубокого обучения могут распознавать речь с рекордной точностью. А в 2012 году та же группа выиграла соревнование по машинному зрению, используя алгоритм глубокого обучения, показавший удивительную точность.

    Нейросеть глубокого обучения распознаёт объекты на картинках при помощи простого трюка. Слой симулируемых нейронов получает ввод в виде картинки и некоторые из нейронов активизируются в ответ на интенсивность отдельных пикселей. Результирующий сигнал проходит через множество слоёв связанных между собой нейронов перед тем, как достичь выходного слоя, сигнализирующего о наблюдении объекта. Математический приём под названием „обратное распространение“ используется для подгонки чувствительности нейронов сети для создания правильного ответа. Именно этот шаг и даёт системе возможность обучаться. Различные слои в сети откликаются на такие свойства, как края, цвета или текстура. Такие системы сегодня способны распознавать объекты, животных или лица с точностью, соперничающей с человеческой.

    С применением технологии глубокого обучения к языку есть очевидная проблема. Слова – это произвольные символы и этим они, по сути, отличаются от изображений. Два слова могут иметь схожее значение и содержать совершенно разные буквы. А одно и то же слово может означать разные вещи в зависимости от контекста.

    В 1980-х исследователи выдали хитрую идею превращения языка в такой тип проблемы, с которым нейросеть может справиться. Они показали, что слова можно представлять в виде математических векторов, что позволяет подсчитывать сходство связанных слов. К примеру, „лодка“ и „вода“ близки в векторном пространстве, хотя и выглядят по-разному. Исследователи из Монреальского университета под руководством Йошуа Бенджио и ещё одна группа из Google использовали эту идею для построения сетей, в которых каждое слово в предложении используется для построения более сложного представления. Джоффри Хинтон , профессор из Университета Торонто и видный исследователь глубокого обучения, работающий также и в Google, называет это „мысленным вектором“.

    Используя две таких сети, можно делать переводы с одного языка на другой с отличной точностью. А комбинируя эти типы сетей с той, что распознаёт объекты на картинках, можно получить удивительно точные субтитры.

    Смысл жизни

    Google уже обучает свои компьютеры основам языка. В мае компания обнародовала систему Parsey McParseface, способную распознавать синтаксис, существительные, глаголы и другие элементы текста. Несложно видеть, как понимание языка может помочь компании. Алгоритм поиска Google когда-то просто отслеживал ключевые слова и ссылки между веб-страницами. Теперь система RankBrain читает текст страниц, чтобы понять его смысл и улучшить результаты поиска. Ли хочет продвинуть эту идею ещё дальше. Адаптируя систему, оказавшуюся полезной для переводов и подписей картинок, они с коллегами создали Smart Reply, читающий содержимое писем на Gmail и предлагающую возможные ответы. Они также создали программу, обучившуюся на основе чата поддержки Google отвечать на простые технические вопросы.

    Недавно Ли создал программу, способную генерировать сносные ответы на непростые вопросы. Она тренировалась на диалогах из 18 900 фильмов. Некоторые ответы пугающе точно попадают в точку. К примеру, Ли спросил „В чём смысл жизни?“ и программа ответила „В служении высшему добру“. „Неплохой ответ,- вспоминает он с ухмылкой. – Возможно, лучше, чем я бы ответил сам“.

    Есть только одна проблема, которая становится очевидной при взгляде на большее количество ответов системы. Когда Ли спросил „Сколько ног у кошки?“, система ответила „Думаю, четыре“. Затем он спросил „Сколько ног у сороконожки?“ и получил странный ответ „Восемь“. По сути, программа Ли не понимает, о чём говорит. Она понимает, что некоторые комбинации символов сочетаются вместе, но не понимает реальный мир. Она не знает, как выглядит сороконожка, или как она двигается. Это всё ещё иллюзия интеллекта, без здравого смысла, который люди принимают, как само собой разумеющееся. Системы глубокого обучения в этом смысле довольно шаткие. Система от Google, создающая подписи к изображениям, иногда делает странные ошибки, к примеру, описывает дорожный знак как холодильник с едой.

    По странному совпадению, соседом Терри Винограда в Пало Альто оказался человек, который может помочь компьютерам лучше разобраться в реальном смысле слов. Фей-Фей Ли , директор Стэнфордской лаборатории искусственного интеллекта, была в декретном отпуске во время моего визита, но она пригласила меня домой и гордо представила мне своего трёхмесячного ребёнка, Финикс. „Обратите внимание, что на вас она смотрит больше, чем на меня,- сказала Ли, когда Финикс уставилась на меня. – Это потому что вы новый; это раннее распознавание лиц“.

    Большую часть своей карьеры Ли исследовала вопросы машинного обучения и компьютерного зрения. Несколько лет назад под её руководством была проведена попытка создания базы данных из миллионов изображений объектов, каждое из которых было подписано соответствующими ключевыми словами. Но Ли считает, что машинам необходимо более сложное понимание происходящего в мире и в этом году её команда выпустила другую базу данных с изображениями, аннотации к которым были гораздо богаче. К каждой картинке люди сделали десятки подписей: „Собака на скейте“, „У собаки густой развевающийся мех“, „Дорога с трещинками“ и так далее. Они надеются, что системы машинного обучения научатся понимать физический мир. „Языковая часть мозга получает очень много информации, в том числе и от визуальной системы,- говорит Ли. – Важной частью ИИ будет интеграция этих систем“.

    Этот процесс ближе к обучению детей, связывающих слова с объектами, взаимоотношениями и действиями. Но аналогия с обучением людей не заходит слишком далеко. Детишкам не нужно видеть собаку на скейте, чтобы представить её себе или описать словами. Ли верит, что сегодняшних инструментов для ИИ и машинного обучения не будет достаточно для того, чтобы создать настоящий ИИ. „Это не просто будет глубокое обучение с большим набором данных,- говорит она. – Мы, люди, очень плохо справляемся с подсчётами больших данных, но очень хорошо – с абстракциями и творчеством“.

    Никто не знает, как наделить машины этими человеческими качествами и возможно ли это вообще. Есть ли что-то исключительно человеческое в таких качествах, что не позволяет ИИ обладать ими?

    Специалисты по когнитивным наукам, например, Тененбаум из MIT, считают, что сегодняшним нейросетям не хватает критичных компонентов разума – вне зависимости от размера этих сетей. Люди способны относительно быстро обучаться на сравнительно малых объёмах данных, и у них есть встроенная возможность эффективного моделирования трёхмерного мира. „Язык построен на других возможностях, вероятно, лежащих более глубоко и присутствующих в младенцах ещё до того, как они начинают владеть языком: визуальное восприятие мира, работа с нашим двигательным аппаратом, понимание физики мира и намерений других существ“,- говорит Тененбаум.

    Если он прав, то без попыток симуляции человеческого процесса обучения, создания ментальных моделей и психологии будет очень сложно воссоздать понимание языка у ИИ.

    Объяснитесь

    Гудман со своими студентами разработали язык программирования Webppl, который можно использовать для наделения компьютеров вероятностным здравым смыслом, что при разговорах оказывается довольно важным. Одна экспериментальная версия умеет распознавать игру слов, а другая – гиперболы. Если ей сказать, что некоторым людям приходится проводить „вечность“ в ожидании столика в ресторане, она автоматически решит, что использование буквального значения этого слова в данном случае маловероятно и что люди, скорее всего, ждут довольно долго и раздражаются. Систему пока нельзя назвать истинным интеллектом, но она показывает, как новые подходы могут помочь ИИ-программам разговаривать чуть более жизненно.

    Также пример Гудмана показывает, как сложно будет научить машины языку. Понимание смысла понятия „вечность“ в определённом контексте – пример того, чему должны будут научиться ИИ-системы, при этом это на самом деле довольно простая и рудиментарная вещь.

    Тем не менее, несмотря на сложность и запутанность задачи, первоначальные успехи исследователей, использующих глубокое обучение для распознавания образов или игры в го, дают надежду, что мы находимся на пороге прорыва и в языковой области. В этом случае этот прорыв подоспел как раз вовремя. Если ИИ должен стать универсальным инструментом, помочь людям дополнить и усилить их собственный интеллект и выполнять задачи в режиме беспроблемного симбиоза, то язык является ключом к достижению этого состояния. Особенно если ИИ-системы будут всё больше использовать глубокое обучение и другие технологии для самопрограммирования.

    »В целом, системы глубокого обучения вызывают благоговейный трепет,- говорит Джон Леонард , профессор, изучающий робомобили в MIT. – С другой стороны, их работу довольно сложно понять».

    Компания Toyota, изучающая различные технологии автономного вождения, запустила в MIT исследовательский проект под руководством Джеральда Сассмана , эксперта по ИИ и языкам программирования, с целью разработки системы автономного вождения, способной объяснить, почему она в какой-то момент совершила то или иное действие. Очевидным способом дать такое объяснение был бы вербальный. «Создавать системы, сознающие свои знания – это очень сложная задача,- говорит Леонард, руководящий другим проектом Toyota в MIT. – Но, да, в идеале они должны дать не просто ответ, а объяснение».

    Через несколько недель после возвращения из Калифорнии я встретился с Дэвидом Сильвером , исследователем из отдела Google DeepMind и разработчиком AlphaGo. Он выступал с рассказом о матче против Седоля на научной конференции в Нью-Йорке. Сильвер объяснил, что когда программа во второй игре сделала свой решающий ход, его команда была удивлена не меньше остальных. Они лишь могли видеть, что AlphaGo предсказала шансы на выигрыш, и это предсказание мало менялось после 37-го хода. Только несколько дней спустя, тщательно проанализировав игру, команда сделала открытие: переварив предыдущие игры, программа подсчитала, что игрок-человек может сделать такой ход с вероятностью в 1 к 10 000. А её тренировочные игры показывали, что такой манёвр обеспечивает необычайно сильное позиционное преимущество.

    Так что, в каком-то смысле, машина знала, что этот ход ударит по слабому месту Седоля.

    Сильвер сказал, что в Google рассматривают несколько возможностей коммерциализации этой технологии, включая интеллектуальных ассистентов и инструменты для медицинского обслуживания. После лекции я спросил его о важности иметь возможность общаться с ИИ, управляющим подобными системами. «Интересный вопрос,- сказал он после паузы. – Для некоторых областей применения это может быть полезным. Например, в здравоохранении может быть важно знать, почему было принято конкретное решение».

    В самом деле, ИИ становятся всё более сложными и запутанными и очень сложно представить, как мы будем работать с ними без языка – без возможности спросить их, «Почему?». Более того, возможность с лёгкостью общаться с компьютерами сделало бы их более полезными и выглядело бы это волшебством. В конце концов, язык – это самый лучший из наших способов понимать мир и взаимодействовать с ним. Настало время машинам догонять нас.

  • Добавить комментарий