GUI в Java c помощью JFace Создание окна приложения


Оглавление (нажмите, чтобы открыть):

Java Eclipse пример оконного приложения — создание окна, задание размеров, добавление надписей и кнопок, вывод сообщения

Primary tabs

Forums:

Далее пример урока 8 по программированию на Java.

Это пример содержит 5 классов (в проекте вам надо будет создать пять классов), предварительно создав два пакета пакета.

пакет TestForm

Этот пакет содержит два класса.

класс FormStart (создаёт «рамку», задаёт её размеры и запрашивает холст):

класс MainFormAppearance ( в одном своём методе задаёт внешность холста и возвращает ссылку на холст):

В этом пакете будут расположены 3 класса-действия (действий), которые мы будем «прикреплять» к создаваемым кнопкам (см. класс выше MainFormAppearance)

Класс CsvListener:

класс ParceListener:


Класс TestActionListener:

Oracle experience

Дневник разработчика Oracle

08.11.2014

Создание оконного Java-приложения

Цель: создать простейшее оконное приложение на Java, выводить текст, переданный в качестве параметра.
Основы Java и создание простейшего приложения Hello World можно почитать здесь. Наш материал предполагает, что установлен пакет JDK, настроены переменные среды и скачана IDE JDeveloper (взять можно здесь).

Шаг 1: создание класса. Используем графические компоненты из библиотеки Swing. Если передан параметр, используем его как текст в графическом компоненте JLabel.
Если запустить данный класс на выполнение, то увидим окно с надписью «Empty input», т.к. класс был запущен без параметров.

Часть 4

Серия контента:

Этот контент является частью # из серии # статей: Создание GUI приложений в Java с использованием библиотеки GTK+

Этот контент является частью серии: Создание GUI приложений в Java с использованием библиотеки GTK+

Следите за выходом новых статей этой серии.

В прошлых статьях цикла были рассмотрены основные принципы построения настольных приложений с использованием Java и GTK+. В настоящей, заключительной части, мы постараемся охватить многообразие доступных виджетов. Если провести аналогию с изучением иностранного языка, то эта статья предполагает пополнение словарного запаса для тех, кто уже имеет представление об основах.

За базу возьмем пустое окно. Основное внимание будет уделено наиболее востребованным элементам пользовательского интерфейса и способам их взаимодействия.

Сразу следует отметить, что все рассматриваемые здесь элементы являются потомками org.gnome.gtk.Widget. Обратитесь к документации, чтобы познакомиться с методами, которые доступны в каждом из них. На классе Widget иерархия не заканчивается: у виджетов достаточно большое генеалогическое дерево, «растущее» вплоть до org.freedesktop.bindings.Pointer. Для разработчика оконного интерфейса в этом классе найдется мало чего интересного, поэтому останавливаться на нем не будем. Отметим лишь, что это как раз то место, где GTK+ стыкуется с Java. В классе есть поле pointer типа long. В этом поле хранится ссылка на структуру виджета в памяти. Тип long позволяет использовать библиотеку в 64-битной системе. Потомки Pointer выполняют функцию посредника, т. н. Proxy. Все, что находится ниже — это JNI и GTK+, все, что выше — Java, удобная и дружелюбная.

Метка (Label)

Одним из самых простых виджетов является Label. Это главный элемент в известной программе типа «Hello, World», т. к. основная (и, пожалуй, единственная) его задача — это выводить текст. Имеет два конструктора: без параметра и с параметром-строкой, которая и будет содержимым, видимым для пользователя. Помимо методов, что достались от класса Widget (и от других, конечно, тоже, но про java.lang.Object упоминать, наверное, не стоит), таких как connect() и getCanFocus(), интерес представляют лишь разного рода геттеры/сеттеры.

Понятно, что никаких особых манипуляций этот виджет не предполагает. Рассмотрим некоторые свойства, а точнее методы: самый главный — это setLabel(String), он позволяет изменить строку-содержимое виджета. В некоторых случаях может быть полезна установка свойства Selectable (setSelectable): оно отвечает за возможность выделять (и копировать) текст. О таких малоиспользуемых свойствах, как угол поворота (setAngle()), ширина символов (setWidthChars()) и т. п. вы можете узнать из справки.

Кнопки

Кнопки можно создавать самые разные. Базовым классом является org.gnome.gtk.Button. Простую кнопку с текстом можно получить при помощи конструктора Button(String str). Простую кнопку с картинкой — при помощи вызова метода setImage(Image img).

Сразу скажем пару слов об org.gnome.gtk.Image. Это класс, представляющий изображение, которое может быть далее использовано не только при работе с кнопками. При создании экземпляра данного класса можно указать путь к файлу, или же передать объект класса org.gnome.gdk.Pixbuf (изображение, загруженное в память).

Класс Button наследуется от org.gnome.gtk.Bin, это значит, что кнопка — это контейнер с одним элементом. Т. е. для того, чтобы поместить на кнопку изображение и текст, необходимо прибегнуть к помощи другого контейнера. Строки ниже демонстрируют это. Также показано, как работать с Image:

Листинг 1. Создание кнопки с картинкой и надписью.

После добавляем кнопку button на форму и, если по указанному пути в файловой системе имеется картинка, то любуемся изображением и текстом под ним.

Теперь посмотрим, какие типы кнопок предоставляет библиотека libjava-gnome. Кнопка может быть переключателем, т. е. хранить состояние включено/выключено. Такая функциональность представляется org.gnome.gtk.ToggleButton. Во многом он подобен Button, потому что наследуется от него. Характерными являются методы setActive(boolean active) и getActive(), которые позволяют установить состояние и получить информацию о текущем состоянии. Также следует отметить наличие метода connect(ToggleButton.Toggled handler). Он позволяет «привязаться» к переключению.

Кнопка может быть ссылкой. Для этого имеется класс org.gnome.gtk.LinkButton, который в качестве своего содержимого ожидает видеть объект типа java.net.URI. Естественно, имеются соответствующие сеттер и геттер для это свойства. Подобные кнопки-ссылки чаще всего можно видеть в диалоговых окнах «О программе».

Специфическим функционалом обладают org.gnome.gtk.ColorButton и org.gnome.gtk.FontButton. Они предназначены для вызова диалоговых окон выбора цвета и шрифта. Получить значение можно методами getColor() и getFontName().

Существует также набор кнопок, предопределенных в среде Gnome. Хранится он в классе org.gnome.gtk.Stock. Если воспользоваться им, то как минимум не потребуется решать вопрос локализации. Кроме того, использование стандартных элементов считается хорошей практикой, ибо для пользователя будут привычнее и внешний вид, и клавиши быстрого доступа. В качестве примера рассмотрим создание кнопки на основе, скажем, Stock.ABOUT:

Поля ввода

Для организации взаимодействия с пользователем в программе должна присутствовать система приема и выдачи данных. Вывод в лице Label мы рассмотрели выше, теперь займемся вводом. Теоретически этого будет достаточно для написания программы любой сложности.

Простейшее поле можно создать, вызвав конструктор класса org.gnome.gtk.Entry(). Это будет обычная строка для ввода, ничего примечательного. Сам класс имеет множество методов, рассматривать которые нет особого смысла. Но это не касается метода getText(), без него, наверное, не обходится никто.

Рассмотрим еще упрощающий ввод чисел класс org.gnome.gtk.SpinButton.SpinButton (счетчик). Он позволяет задавать ограничения на максимальное и минимальное число. Понятно, что нечисловое значение вводить нельзя. Маленькие стрелочки с заданным шагом используются для изменения содержимого счетчика. Конструктор выглядит следующим образом: SpinButton(double min, double max, double step). Первый и второй параметры, соответственно, это минимальное и максимальное значения для ввода. Третий — шаг, с которым будет изменяться содержимое. Параметры имеют тип double, но вводить можно только целые числа, это сделано для увеличения числа допустимых разрядов в числе.

Все вместе

Теперь покажем пример взаимодействия описанных выше типов виджетов. Добавим на форму метку, поле ввода и кнопку. По нажатию на кнопку содержимое поля будет отображаться на метке.

Листинг 2. Элементарное взаимодействие элементов.

Вначале создается вертикальный контейнер. В листинге этот участок опущен, но контейнер должен быть добавлен в главное окно. Затем по очереди создаются наши виджеты. То, как смена надписи привязывается к нажатию кнопки, рассматривалось в предыдущей статье, и на этом мы останавливаться не будем. В методе onClicked() содержимое поля ввода берется вызовом метода getText() и устанавливается методом setLabel().

Расширенное редактирование текста

Познакомимся с более сложным примером. Сразу приведем полный код и по мере появления в нем интересных моментов будем их объяснять.

Листинг 3. Подобие текстового редактора.

Приведенные выше строки создают поле для ввода текста и три кнопки. Также добавлено немного текста с различным форматированием. Функциональность кнопок соответствует подписям: Копировать, Вставить, Сохранить.

Главный элемент – это поле TextView, виджет, который представляет из себя текстовое поле с произвольным количеством строк и возможностью форматирования. Различное форматирование обеспечивается соответствующими объектами класса TextTag. Для примера, в приложении показано использование методов setFamily() и setForeground(), что соответствует установке шрифта и цвета текста. Обратите внимание, как задается шрифт: в строке через запятую идет сначала название шрифта, а затем его размер. Как используется TextTag, будет показано чуть ниже.

Далее создается объект TextBuffer. Это самая важная часть, ибо без данного объекта работать с текстом в TextView невозможно. У TextBuffer есть метод insert();. Здесь использованы два перегруженных варианта: в первом из них текст просто вставляется в позицию, указанную первым параметром, во втором задается форматирование вставляемого текста. Как раз здесь и необходим заранее подготовленный объект класса TextTag.

Позиция курсора в буфере представлена классом TextIter; в следующем методе-обработчике нажатия он будет весьма полезен. Поле нашего класса strBuffer представляет некий текстовый буфер, в котором по нажатию кнопки Copy будет сохраняться выделенный фрагмент. Метод getText () принимает на входе три параметра: начальную/конечную позиции и флаг, указывающий на необходимость возвращать скрытый невидимый текст. Чтобы получить выделенный фрагмент, воспользуемся методом getSelectionBound(), а затем получим от него объект класса TextIter. Это будет начальная позиция. Конечная позиция – это то место, где находится курсор в данный момент . Его можно получить вызовом метода getInsert(), а затем также нужно взять соответствующий TextIter.

Посмотрим на обработчик кнопки Paste. Здесь можно видеть использование org.gnome.gtk.MessageDialog. Этот класс позволяет создавать стандартные диалоговые окна для сообщений, подтверждений, предупреждений и т.д. Конструктор принимает ряд параметров, перечислим их в порядке следования: родительское окно, модальность, тип сообщения, набор кнопок и текст сообщения. С возможными значениями MessageType (тип сообщения, третий параметр) и ButtonsType (набор кнопок) вы можете познакомиться в документации. Метод run() возвращает значение типа ResponseType, на основании которого можно делать вывод о выборе пользователя. В случае, если пользователь нажал кнопку OK (ResponseType.OK), мы вставляем текст в позицию курсора. С методом insert() вы уже знакомы. В конце окно прячется вызовом метода hide(). Создавать диалоговое окно каждый раз по нажатию кнопки – практика не очень хорошая: его можно создать один раз и сохранить, скажем, в переменной класса. Но мы сделали это для наглядности, чтобы не разносить код по разным частям класса. Понадеемся, так сказать, на достаточность объема памяти и сборщик мусора.

Следующую кнопку обслуживает другой метод onClicked(), в котором используется org.gnome.gtk.FileChooserDialog. Этот класс отвечает за создание стандартного окна выбора файлов. На вход конструктору передаются три параметра: заголовок окна, родительское окно и требуемое действие (org.gnome.gtk.FileChooserAction). Последний параметр может иметь значения CREATE_FOLDER, OPEN, SAVE или SELECT_FOLDER. Что означают эти константы, понятно из их имен. В остальном FileChooserDialog работает так же, как и MessageDialog. Главным отличием является наличие метода getFilename(), который позволяет получить полный путь к выбранному пользователем файлу.

Заключение

Рассмотренные выше возможности библиотеки java-gnome покрывают лишь незначительную часть доступных. Для большинства читателей это покрытие может служить точкой старта, от которой можно переходить к чтению javadoc’ов. Конечно, литературы по java-gnome не так уж много, но почти всегда можно пользоваться руководствами по GTK+ в сочетании с javadoc. Благо, соответствие между родной библиотекой и ее оберткой достаточно очевидно, хотя придется мысленно переносить прочитанное на другую платформу.

Выбор библиотеки для создания графического интерфейса Java. GUI в Java c помощью JFace: Создание окна приложения

Пользовательский интерфейс на Java прошел весьма тернистый путь становления и развития. Долгое время его обвиняли в медленной работе, жадности к ресурсам системы, ограниченной функциональности. Появление.NET с более быстрыми графическими компонентами еще больше пошатнуло позиции Java. Но нет худа без добра — все эта движуха только подстегивала разработчиков Java к развитию и улучшению графических библиотек. Посмотрим, что из этого получилось.

Abstract Window Toolkit

AWT была первой попыткой Sun создать графический интерфейс для Java. Они пошли легким путем и просто сделали прослойку на Java, которая вызывает методы из библиотек, написанных на С. Библиотечные методы создают и используют графические компоненты операционной среды. С одной стороны, это хорошо, так как программа на Java похожа на остальные программы в рамках данной ОС. Но с другой стороны, нет никакой гарантии, что различия в размерах компонентов и шрифтах не испортят внешний вид программы при запуске ее на другой платформе. Кроме того, чтобы обеспечить мультиплатформенность, пришлось унифицировать интерфейсы вызовов компонентов, из-за чего их функциональность получилась немного урезанной. Да и набор компонентов получился довольно небольшой. К примеру, в AWT нет таблиц, а в кнопках не поддерживается отображение иконок.

Использованные ресурсы AWT старается освобождать автоматически. Это немного усложняет архитектуру и влияет на производительность. Освоить AWT довольно просто, но написать что-то сложное будет несколько затруднительно. Сейчас ее используют разве что для апплетов.

  • часть JDK;
  • скорость работы;
  • графические компоненты похожи на стандартные.
  • использование нативных компонентов налагает ограничения на использование их свойств. Некоторые компоненты могут вообще не работать на «неродных» платформах;
  • некоторые свойства, такие как иконки и всплывающие подсказки, в AWT вообще отсутствуют;
  • стандартных компонентов AWT очень немного, программисту приходится реализовывать много кастомных;
  • программа выглядит по-разному на разных платформах (может быть кривоватой).

В настоящее время AWT используется крайне редко — в основном в старых проектах и апплетах. Oracle припрятал обучалки и всячески поощряет переход на Swing. Оно и понятно, прямой доступ к компонентам оси может стать серьезной дырой в безопасности.

Swing

Вслед за AWT Sun разработала набор графических компонентов под названием Swing. Компоненты Swing полностью написаны на Java. Для отрисовки используется 2D, что принесло с собой сразу несколько преимуществ. Набор стандартных компонентов значительно превосходит AWT по разнообразию и функциональности. Стало легко создавать новые компоненты, наследуясь от существующих и рисуя все, что душе угодно. Стала возможной поддержка различных стилей и скинов. Вместе с тем скорость работы первых версий Swing оставляла желать лучшего. Некорректно написанная программа и вовсе могла повесить винду намертво.

Тем не менее благодаря простоте использования, богатой документации и гибкости компонентов Swing стал, пожалуй, самым популярным графическим фреймворком в Java. На его базе появилось много расширений, таких как SwingX, JGoodies, которые значительно упрощают создание сложных пользовательских интерфейсов. Практически все популярные среды программирования Java включают графические редакторы для Swing-форм. Поэтому разобраться и начать использовать Swing не составит особого труда.

  • часть JDK, не нужно ставить дополнительных библиотек;
  • по Swing гораздо больше книжек и ответов на форумах. Все проблемы, особенно у начинающих, гуглу досконально известны;
  • встроенный редактор форм почти во всех средах разработки;
  • на базе свинга есть много расширений типа SwingX;
  • поддержка различных стилей (Look and feel).
  • окно с множеством компонентов начинает подтормаживать;
  • работа с менеджерами компоновки может стать настоящим кошмаром в сложных интерфейсах.

Swing жил, Swing жив, Swing будет жить. Хотя Oracle и старается продвигать JavaFX, на сегодняшний день Swing остается самым популярным фреймворком для создания пользовательских интерфейсов на Java.

Standard Widget Toolkit

SWT был разработан в компании IBM в те времена, когда Swing еще был медленным, и сделано это было в основном для продвижения среды программирования Eclipse. SWT, как и AWT, использует компоненты операционной системы, но для каждой платформы у него созданы свои интерфейсы взаимодействия. Так что для каждой новой системы тебе придется поставлять отдельную JAR-библиотеку с подходящей версией SWT. Это позволило более полно использовать существующие функции компонентов на каждой оси. Недостающие функции и компоненты были реализованы с помощью 2D, как в Swing. У SWT есть много приверженцев, но, положа руку на сердце, нельзя не согласиться, что получилось не так все просто, как хотелось бы. Новичку придется затратить на изучение SWT намного больше времени, чем на знакомство с тем же Swing. Кроме того, SWT возлагает задачу освобождения ресурсов на программиста, в связи с чем ему нужно быть особенно внимательным при написании кода, чтобы случайное исключение не привело к утечкам памяти.

  • использует компоненты операционной системы — скорость выше;
  • Eclipse предоставляет визуальный редактор форм;
  • обширная документация и множество примеров;
  • возможно использование AWT- и Swing-компонентов.
  • для каждой платформы необходимо поставлять отдельную библиотеку;
  • нужно все время следить за использованием ресурсов и вовремя их освобождать;
  • сложная архитектура, навевающая суицидальные мысли после тщетных попыток реализовать кастомный интерфейс.

Видно, что в IBM старались. Но получилось уж очень на любителя…

JavaFX

JavaFX можно без преувеличения назвать прорывом. Для отрисовки используется графический конвейер, что значительно ускоряет работу приложения. Набор встроенных компонентов обширен, есть даже отдельные компоненты для отрисовки графиков. Реализована поддержка мультимедийного контента, множества эффектов отображения, анимации и даже мультитач. Внешний вид всех компонентов можно легко изменить с помощью CSS-стилей. И самое прекрасное — в JavaFX входит набор утилит, которые позволяют сделать родной инсталлятор для самых популярных платформ: exe или msi для Windows, deb или rpm для Linux, dmg для Mac. На сайте Oracle можно найти подробную документацию и огромное количество готовых примеров. Это превращает программирование с JavaFX в легкое и приятное занятие.

  • быстрая работа за счет графического конвейера;
  • множество различных компонентов;
  • поддержка стилей;
  • утилиты для создания установщика программы;
  • приложение можно запускать как десктопное и в браузере как часть страницы.
  • фреймворк еще разрабатывается, поэтому случаются и падения и некоторые глюки;
  • JavaFX пока не получил широкого распространения.

Хорошая работа, Oracle. Фреймворк оставляет только позитивные впечатления. Разобраться несложно, методы и интерфейсы выглядят логичными. Хочется пользоваться снова и снова!

Визуальные библиотеки на практике

SWT: погодный виджет

Для демонстрации возможностей наиболее популярных графических библиотек и основных принципов работы с ними сделаем несколько небольших виджетов с отображением различной информации.

И начнем, пожалуй, с самого популярного виджета — отображения текущей погоды, для реализации которого выберем SWT.

Любая программа на SWT начинается с создания объекта Display. Он служит своеобразным контекстом приложения, который содержит необходимые методы для обращения к ресурсам системы и обеспечивает цикл событий. Следующим шагом будет создание не менее важного объекта Shell. Shell представляет собой обычное окно операционной системы. В конструктор shell передается Display, чтобы создать окно верхнего уровня.

Display display = new Display(); shell = new Shell(display, SWT.NO_TRIM);

Так как мы создаем виджет, нам не нужно отображать стандартное обрамление окна и кнопки управления, для этого мы указали флаг NO_TRIM. Для фона мы будем использовать картинку — прямоугольник с закругленными углами. В принципе, окно SWT может принимать любые формы. Чтобы добиться такого эффекта, используем класс Region. Все, что нужно, — добавить в этот класс все видимые точки из картинки фона, пропуская прозрачные.

Image image = new Image(display, «images/bg.png#26759185»);

В изображениях разных форматов прозрачность задается по-разному, поэтому и извлекается информация о прозрачных областях тоже не одинаково. Создаем область фона и добавляем туда все видимые точки:

Region region = new Region(); ImageData imageData = image.getImageData(); if (imageData.alphaData != null) < Rectangle pixel = new Rectangle(0, 0, 1, 1); for (int y = 0; y

Устанавливаем форму окна:

Теперь нужно создать слушателя событий для окна. Нас будут интересовать события рисования окна, события мыши и нажатия клавиш, чтобы окно можно было передвигать по экрану.

Listener listener = new Listener()

Итак, по нажатию на клавишу Esc окно закроется. При нажатии левой клавиши мыши на области окна запомним координаты нажатия. При движении мыши с зажатой левой клавишей — передвигаем окно на экране соответственно движению. При событии перерисовки — рисуем картинку фона, используя графический контекст GC.

Назначим слушатель соответствующим событиям окна:

Shell.addListener(SWT.KeyDown, listener); shell.addListener(SWT.MouseDown, listener); shell.addListener(SWT.MouseMove, listener); shell.addListener(SWT.Paint, listener);

Устанавливаем размер окна равным размеру изображения:

Shell.setSize(imageData.x + imageData.width, imageData.y + imageData.height);

Открываем окно и запускаем цикл событий:

Shell.open(); while (!shell.isDisposed ())

Не забываем в конце освободить использованные ресурсы:

Region.dispose(); image.dispose(); display.dispose();

Запустив программу на этом этапе, мы получим прямоугольничек, который можно двигать мышкой и закрывать по Esc.

Настало время добавить содержания. Будем отображать текущую погоду в виде иконки состояния (солнечно, дождь, снег…), показаний температуры и времени последнего обновления.

Для расположения графических компонентов в окне в нужном виде используются менеджеры компоновки. Менеджер компоновки занимается не только расположением компонентов, но и изменением их размеров при изменении размеров окна. Для нашего виджета будем использовать GridLayout. Этот менеджер располагает компоненты в ячейках воображаемой таблицы. Создаем GridBagLayout на две колонки с различной шириной колонок (флаг false в конструкторе), устанавливаем его в качестве менеджера компоновки окна:

Для картинки статуса используем компонент Label. В качестве родителя передаем объект окна. Вторым параметром можно установить стиль компонента. Для каждого компонента набор возможных флагов стиля разный, их можно посмотреть в документации или прямо в исходниках компонента.

//draw status image Label imageLabel = new Label(shell, SWT.NONE); imageLabel.setLayoutData(new GridData(SWT.LEFT, SWT.TOP, true, true, 1, 1));

Флаги в классе GridData означают, что метка будет располагаться слева вверху, будет растягиваться горизонтально и вертикально (флаги, установленные в true) при наличии свободного места и занимает одну строку и один столбец таблицы компоновки.


В SWT нет прозрачного фона компонентов, и позади картинки статуса будет красоваться белый фон, чего, конечно, не хотелось бы. Поэтому создадим объект Color с цветом фона окна:

Color bgColor = new Color(display, 0x2b, 0x2b, 0x2b);

В конце программы этот объект также необходимо очистить, вызвав метод dispose. Устанавливаем цвет фона и картинку статуса, которую можно загрузить из файла точно так же, как мы загрузили картинку фона вначале:

ImageLabel.setBackground(bgColor); Image statusImage = new Image(display, «images/1.png#26759185»); imageLabel.setImage(statusImage);

Теперь добавим Label с текущей температурой и расположим его в правой верхней части окна:

Label temperatureLabel = new Label(shell, SWT.NONE); temperatureLabel.setLayoutData(new GridData(SWT.RIGHT, SWT.TOP, false, false, 1, 1));

Установим какую-нибудь температуру:

Для записи температуры по Цельсию используется юникодный номер соответствующего символа со служебными символами \u.

Шрифт по умолчанию для текстовых меток слишком маленький. Так что создадим новый, побольше:

FontData fD = temperatureLabel.getFont().getFontData(); fD.setHeight(30); fD.setStyle(SWT.BOLD); Font newFont = new Font(display, fD); temperatureLabel.setFont(newFont); Шрифт, как и другие ресурсные объекты, нужно освобождать. Для этого воспользуемся слушателем события разрушения метки:

Наконец, добавим метку с описанием погодных условий:

Label descriptionLabel = new Label(shell, SWT.WRAP); descriptionLabel.setLayoutData(new GridData(SWT.FILL, SWT.CENTER, true, true, 2, 1)); descriptionLabel.setText(«Облачно с прояснениями, небольшой дождь»); descriptionLabel.setBackground(bgColor); descriptionLabel.setForeground(display.getSystemColor(SWT.COLOR_WHITE));

Текст может быть довольно длинным, так что при создании метки указываем флаг WRAP, чтобы текст автоматически разбивался на несколько строк при нехватке места. Расположим компонент по центру и разрешим ему заполнить все горизонтальное пространство. Также укажем, что компонент занимает два столбца таблицы компоновки. Запускаем и получаем окошко с картинки «Виджет погоды».

Теперь можно прикрутить какой-нибудь сервис погоды, создать таймер для автоматического обновления — и виджет готов.

Swing: всегда свежие новости

На Swing мы напишем виджет для отображения RSS-новостей. Начинаем, как и в прошлый раз, с создания окна. Класс, реализующий функционал стандартного окна в Swing, называется JFrame. По умолчанию закрытие окна приложения в Swing не приводит к остановке программы, так что лучше прописать, как должно себя вести окно при закрытии:

JFrame frame = new JFrame(); frame.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);

Для представления новостей лучше всего подходит таблица. Swing построен на паттерне «Модель -представление — контроллер» (MVC). В архитектуре MVC модель предоставляет данные, представление отвечает за отображение данных (например, текст, поля ввода), а контроллер обеспечивает взаимодействие между моделью и представлением. Таблица хорошо демонстрирует этот подход. Для представления данных используется класс, реализующий интерфейс TableModel.

Для хранения информации о доступных новостях заведем класс FeedMessage c полями для названия статьи и даты выхода:

Public class FeedMessage

Чтобы упростить и ускорить разработку, наследуем нашу модель данных от класса AbstractTableModel, который предлагает готовую реализацию почти всех методов интерфейса TableModel.

Метод fireTableDataChanged сообщает представлению, что модель данных изменилась и необходима перерисовка.

Создаем таблицу и немного изменяем ее вид, чтобы она была больше похожа на виджет. Убираем линии между строками и столбцами, увеличиваем высоту строки и убираем заголовок таблицы с названиями колонок:

JTable table = new JTable(new RssFeedTableModel()); table.setShowGrid(false); table.setIntercellSpacing(new Dimension(0, 0)); table.setRowHeight(30); table.setTableHeader(null);

Теперь займемся внешним видом ячеек. Swing позволяет назначать отдельные классы представления для разных типов данных. За отрисовку отдельных ячеек таблицы отвечает класс, наследующий интерфейс TableCellRenderer. По умолчанию используется DefaultTableCellRenderer, который представляет собой текстовую метку.

Назначим свой отрисовщик ячейки для данных типа String. Изменим стандартный цвет шрифта и сделаем чередующийся цвет фона, чтобы улучшить читаемость.

Чтобы таблица начала использовать наш отрисовщик, необходимо добавить метод, который возвращает тип данных для каждой ячейки, в модель данных:

Новостей может быть много, поэтому поместим таблицу на панель прокрутки и сделаем ползунок прокрутки невидимым, чтобы он не портил нам дизайн виджета:

JScrollPane scrollPane = new JScrollPane(table); table.setFillsViewportHeight(true); scrollPane.getVerticalScrollBar().setPreferredSize (new Dimension(0,0));

Добавляем компонент прокрутки на главную панель окна. Вторым аргументом можно передать размещение компонента. По умолчанию главная панель окна использует менеджер компоновки BorderLayout, который располагает компоненты по сторонам света. Поместим таблицу с прокруткой в центре.

Как и в прошлый раз, уберем стандартное обрамление окна. А в качестве заголовка окна будем использовать стилизованную текстовую метку, которую разместим вверху окна.

JLabel titleLabel = new JLabel(«Xakep RSS»); Font titleFont = new Font(«Arial», Font.BOLD, 20); titleLabel.setFont(titleFont); titleLabel.setHorizontalAlignment(SwingConstants.CENTER); titleLabel.setForeground(Color.WHITE); titleLabel.setPreferredSize(new Dimension(0, 40)); frame.getContentPane().add(titleLabel, BorderLayout.NORTH);

В отличие от SWT, объекты «цвет» и «шрифт» освобождаются автоматически, так что можно больше не переживать за утечки памяти.

Добавляем слушатели мыши, чтобы окно можно было двигать по экрану.

MouseAdapter listener = new MouseAdapter()

Теперь поменяем форму окна на прямоугольник с закругленными углами. Лучше всего это делать в слушателе компонента, так как, если размер окна изменится, форма окна будет правильно пересчитана:

Устанавливаем размер окна, убираем обрамление и делаем окно полупрозрачным.

Frame.setSize(520, 300); frame.setUndecorated(true); frame.setOpacity(0.85f);

Наконец, открываем окно в графическом потоке. SwingUtilities.invokeLater(new Runnable() < public void run() < frame.setVisible(true); >>);

Осталось дописать загрузку данных в отдельном потоке, и получим такой вот виджет с последними новостями твоего любимого журнала:).

JavaFX: послушаем музычку

И наконец, гвоздь сезона — JavaFX. Воспользуемся его мультимедийными возможностями и компонентом для построения графиков и сделаем простенький эквалайзер.

Для начала наследуем класс виджета от Application. Это основной класс приложения в JavaFX. Application содержит основные методы жизненного цикла приложения. Компоненты формы создаются в методе start, аргументом которому служит класс Stage. Stage представляет собой окно программы. Изменим стиль окна на TRANSPARENT, чтобы убрать обрамление и кнопки. В Stage помещается класс Scene, в котором задаются размеры окна и цвет фона. В Scene, в свою очередь, передаем класс Group, в который будем помещать дочерние компоненты:

Для отображения эквалайзера используем столбиковую диаграмму, по осям которой будем отображать частоту и мощность звука:

CategoryAxis xAxis = new CategoryAxis(); NumberAxis yAxis = new NumberAxis(0,50,10); BarChart bc = new BarChart (xAxis,yAxis); bc.setPrefSize(400, 200); bc.setLegendVisible(false); bc.setAnimated(false); bc.setBarGap(0); bc.setCategoryGap(1); bc.setVerticalGridLinesVisible(false); bc.setHorizontalGridLinesVisible(false); xAxis.setLabel(«Частота»); yAxis.setLabel(«Мощность»); yAxis.setTickLabelFormatter(new NumberAxis.DefaultFormatter(yAxis, null, «dB»));

Заполняем диаграмму начальными данными:

XYChart.Series series1 = new XYChart.Series (); series1Data = new XYChart.Data; String categories = new String; for (int i=0; i (categories[i], 50); series1.getData().add(series1Data[i]); > bc.getData().add(series1);

Создаем прямоугольник с закругленными углами, чтобы придать виджету соответствующую форму:

Rectangle rectangle = new Rectangle(0, 0, 400, 200); Stop stops = new Stop < new Stop(0, new Color(0, 0, 0, 0.8)), null>; LinearGradient lg2 = new LinearGradient(0, 0, 0, 0, false, CycleMethod.NO_CYCLE, stops); rectangle.setFill(lg2); rectangle.setArcHeight(20); rectangle.setArcWidth(20);

Добавляем оба компонента к группе:

Назначаем слушателей мыши к группе, чтобы двигать окно по экрану:

Загружаем песню в плеер:

File file = new File(«выпусти меня отсюда.mp3»); Media audioMedia = null; audioMedia = new Media(file.toURI().toURL().toString()); audioMediaPlayer = new MediaPlayer(audioMedia);

Добавляем слушатель, который будет обновлять столбиковую диаграмму:

Делаем сцену видимой и запускаем песню:

Public static void main(String args)

И наслаждаемся такой вот красотой.

В этой статье объясняется, как создать простое приложение, которое показано на рисунке справа, и приводится его исходный код.

Чтобы размещать кнопки, текстовые надписи и другие компоненты в окне программы, вам следует понять, как работает JPanel . Это что-то вроде контейнера для компонентов, который занимает прямоугольную область экрана и показывает компоненты, выровненные по какому-то простому принципу. Как именно выровнены компоненты, зависит от типа схемы размещения, которую вы установили для панели. Для простых задач программирования вам следует знать, как минимум, BorderLayout , который располагает компоненты по краям и один большой компонент ставит в середину, затем FlowLayout , который обычно располагает компоненты в ряд по горизонтали, и, наконец, GridLayout , который располагает компоненты в произвольной таблице n * m. Есть другие типы, но они слишком сложны для новичков. Ключевая идея в том, что «компонентой» может быть не только кнопка или флажок, но и другая JPanel. Вы можете получить достаточно сложный пользовательский интерфейс, просто расположив панели одна на другой и выбрав для них планировку.

Если у вас есть экземпляр объекта JPanel, вызовите метод .setLayout , чтобы установить тип планировки, и затем метод.add, чтобы добавить на панель компоненты. В случае BorderLayout в качестве второго параметра вам нужно будет передать положение. Например, чтобы расположить кнопку в верхней части, вызовите myPanel.add(myButton, BorderLayout.North) .

Контейнер самого высокого уровня, который появляется на экране, представляющем приложение Java, является экземпляром JFrame , а не JPanel . Чтобы добавить вашу основную панель в экземпляр JFrame просто вызовите myJFrame.getContentPane().add(myJPanel, BorderLayout.Center) .

Чтобы заставить ваше приложение делать что-то большее, чем просто появляться, вам нужно будет понять интерфейс ActionListener . У любого неабстрактного ActionListener есть только один метод actionPerformed, который вызывается, когда пользователь выполняет «действие» над компонентой, в которой зарегистрирован слушатель (например, действие над кнопкой — это, очевидно, ее нажатие). Чтобы зарегистрировать слушателя действий для кнопки или любого другого компонента, вызовите метод .addActionListener. .

Создание общего фрейма

Создайте класс, который расширяет класс JFrame . Этот класс будет содержать все ваши компоненты графического интерфейса (GUI), такие как кнопки и текстовые поля.

Продумайте общий внешний вид вашего первого приложения. Неплохо было бы начать с центральной панели типа BorderLayout с другой панелью в нижней ее части (BorderLayout.South ). Эта вторая панель будет иметь тип FlowLayout и содержать несколько кнопок, флажков и других контрольных элементов. И наконец, расположите большой компонент JTextArea посередине центрального компонента. Чтобы взаимодействовать с пользователем посредством текста, вы сможете использовать методы getText() и setText() .

Напишите конструктор для вашего класса. Этот конструктор должен создать все панели и компоненты, которые вы запланировали, расположить их правильно и добавить последнюю панель, которая «прикрепляет все» к вашему фрейму (myFrame.getContentPane().add(myLargePanel, BorderLayout.Center).

Напишите метод main, который будет точкой входа программы. В этом методе создайте экземпляр фрейма, установите его начальные размер и положение (используйте.setSize(x,y) и .setLocation(width, height) ), и заставьте его появиться на экране, вызвав .setVisible(true).

Программирование ответов на действия пользователя

Сделайте ваш фрейм реализующим интерфейс ActionListener . Это позволит вашему классу «слушать» действия компонентов.

Для каждой кнопки, флажка или другого контрольного элемента, которых вы создали, вызовите метод. addActionListener, передав ваш фрейм (this ) в качестве параметра.

Переопределите абстрактный метод класса ActionListener, который называется actionPerformed(ActionEvent event). В этом методе вам следует добавить условные выражения «if», чтобы проверить, откуда пришло событие. В этом условном операторе «if» должно быть условие вроде такого: «if (event.getSource() == button1 )». Здесь проверяется, откуда пришло событие, и пришло ли оно от кнопки. Внутри выражения «if» выполняйте любые действия, которые вам необходимы при нажатии на кнопку.

У JTextArea есть метод .setText(«myText») , который является неплохим способом запрограммировать какой-то видимый ответ на ваше действие.

  • Совсем не намного сложнее реализовать интерфейс MouseListener и использовать .addMouseListener , чтобы зарегистрировать его для любой компоненты.
  • Если вам нужно запросить от пользователя ввести какую-то строку, вызовите статический метод JOptionPane.showInputDialog(this, «My message»). первым параметром должен быть фрейм вашего приложения или какая-нибудь панель (поле для ввода появится посередине родительского элемента). Метод возвращает значение, которое пользователь ввел в диалоговом окне.
  • Вполне возможно разместить все компоненты на одной панели, использующей тип GridBagLayout, но этим классом труднее управлять.
  • Если вы хотите нарисовать собственные графические объекты (например, шахматную доску), почитайте о компоненте Canvas . Он может быть размещен в вашем приложении, как любой другой компонент, но вам нужно будет написать метод.paint, который полностью отвечает за его отрисовку.
  • Во многих реальных приложениях наиболее полезным компонентом Swing является JTable . После изучения основ, продолжайте работать с ним.

Предупреждения

  • Некоторые средства разработки предлагают возможность составить графический интерфейс Swing способом, «удобным для пользователя». Однако, зачастую они не могут должным образом сделать панель с продвинутыми возможностями. Эти возможности включают деревья, таблицы, списки и комбинированные списки, которые меняют свое содержимое по мере работы программы, а также компоненты с моделями данных пользователя и т.д. Код, написанный при таком «дружеском для пользователя» способе, станет настоящим кошмаром, если вам потом потребуется дописать его вручную. Поэтому слишком не увлекайтесь подобными «дизайнерами графического интерфейса, дружественными для пользователя», потому что это ограничит ваши возможности из-за их ограниченных возможностей.
  • Swing — это однопоточное приложение. Если обработка действия у вас занимает слишком много времени, оно «зависнет», пока не произойдет выход из метода .actionPerformed . Изучайте и используйте многопоточность java, чтобы Swing оставался «живым», пока работает какой-то трудоемкий процесс.
  • Большинство методов компонентов Swing можно безопасно вызвать только из потока диспетчеризации событий (метод .actionPerformed и другие похожие методы слушателя). Если вам нужно вызвать их из какого-то другого потока (например, чтобы обновить индикатор прогресса или показать результаты какого-то длительного процесса), почитайте о SwingUtils.invokeLater .

Источники

Исходный код

Import java.awt.BorderLayout ; import java.awt.FlowLayout ; import java.awt.event.ActionEvent ; import java.awt.event.ActionListener ; import javax.swing.JButton ; import javax.swing.JCheckBox ; import javax.swing.JFrame ; import javax.swing.JPanel ; import javax.swing.JTextArea ; /** * Очень простое приложение java swing. * Содержит кнопку и флажок. Отвечает * на изменения этих контрольных элементов * изменением текста в главном текстовом поле. * * @author audriusa */ public ) ; /** * Текстовое поле. */ JTextArea myText = new JTextArea («My text» ) ; /** * Нижняя панель, содержащая кнопку. */ JPanel bottomPanel = new JPanel () ; /** * Родительская панель, содержащая все. */ JPanel holdAll = new JPanel () ; /** * Конструктор. */ public WikiHow() < bottomPanel.setLayout (new FlowLayout () ) ; bottomPanel.add (myCheckBox) ; bottomPanel.add (myButton) ; holdAll.setLayout (new BorderLayout () ) ; holdAll.add (bottomPanel, BorderLayout .SOUTH ) ; holdAll.add (myText, BorderLayout .CENTER ) ; getContentPane() .add (holdAll, BorderLayout .CENTER ) ; myButton.addActionListener (this ) ; myCheckBox.addActionListener (this ) ; setDefaultCloseOperation(DISPOSE_ON_CLOSE) ; >/** * Программа * @param args Параметры старта программы, не используются. */ public static vo >// Указываем, где оно должно появиться: myApplication.setLocation (10 , 10 ) ; myApplication.setSize (300 , 300 ) ; // Показать! myApplication.setVisible (true ) ; > /** * Любой неабстрактный класс, который реализует ActionListener * должен иметь этот метод. * * @param e Событие. */ public vo ) ; else if (e.getSource () == myCheckBox) myText.setText ( «The checkbox state changed to » + myCheckBox.isSelected () ) ; else myText.setText («E . » ) ; > >

В этой короткой статье хочу описать процесс создания небольшой программы, поддерживающей GUI на языке Java . Предполагается, что читатель знаком с основами языка Java .

И так, какие инструменты нам необходимы:

  • Java Virtual Machine (OpenJDK или Oracle JDK)
  • Intellij IDEA (или другое IDE для Java)

После установки необходимого софта, открываем Intellij IDEA и создаем новый проект: File -> New Project…

Я назвал проект guiBase . Как видно на скрине, папка src не содержит ничего, поэтому создаем в ней наш главный класс, содержащий функцию main .

Содеражние главного класса видите выше. Мы уже сейчас можем создать проект (Build project ) и запустить его (Run ). Внизу в терминале вашего IDE вы увидите сообщение “Hello, Govzalla!“ . Но как вы сами поняли — GUI он не поддерживает.

На данном этапе у нас уже есть работающая программа, но без поддержки GUI. А сейчас в той же папке src создадим GUI Form : New -> GUI Form

Открываем созданную GUI форму, нажимаем на JPanel и задаем его идентификатор в поле field name , я задал panel .

После чего перетаскиваем на форму с правой стороны JTextField , JPasswordField и JButton :

Осталось добавить код и связать нашу форму с ним. Когда мы добавляли форму MainWindow , автоматически создался и класс MainWindow , этот класс является классом созданной формы, т.е. именно этот класс будет обслуживать все события данной формы.

Хотя класс нашего окна содержит необходимые элементы, но даже сейчас он не имеет ничего общего с GUI, поэтому расширим его с помощью JFrame и унаследуем всю основную и необходимую функциональность GUI.

В данный момент мы имеем форму MainWindow и класс MainWindow расширенный с помощью JFrame . Сейчас нам необходимо определить все добавленные GUI элементы как содержание класса MainWindow
this.getContentPane().add(panel);
После чего содержание файла MainWindow.java будет изменено следующим образом:

Если попробуете запустить код, вы снова увидите то же самое сообщение “Hello, Govzalla!“. Дело в том, что мы создали класс и форму к нему, но не создали инстанцию этого класса.

Пришло время изменить файл Main.java и добавить туда код создания нашего GUI:

Import java.awt.*; public >

Нажав на кнопку Button вы заметите, что программа никак не реагирует. Дело в том, что мы еще не добавили слушатель (Listener ) для событий (Events ) кнопки Button.

Слушатель событий (Event listener ) JButton должен быть имплентацией адаптера ActionListener , поэтому добавим следующий код в тело класса MainWindow :

Метод actionPerformed () будет обрабатывать все события кнопки button1, но для начала еще необходимо указать кнопке button1 какой класс будет обрабатывать, поэтому добавим следующий код в конструктор класса MainWIndow:
this.button1.addActionListener(new MyButtonListener());
Чтобы наш обработчик не был бессмысленным добавим следующий код в метод actionPerformed ():

Сейчас уже программа будет правильно реагировать на события, не на все события, конечно. Например, если попытаться отключить программу нажав на крестик, окно исчезнет, но программа все еще будет работать, т.к. не добавлен обработчик событий главного окна.

У любого разработчика начинается такое время, когда создавать консольные приложения уже не весело, а изучить что-то новое очень хочется.
Тогда в Java есть несколько путей, для нескольких ОС. В зависимости от тех ОС которые вы используете или окружений которые в них установлены.

Небольшое предисловие:
Сам я являюсь пока еще начинающий программистом (могу писать софт средней сложности, но использую обычно скудный набор функций)
Статья рассчитана так же на новичков. Сам я работаю под Debian с Гномом, так что будут библиотеки мультиплатформенные)

Для начала стоило бы уделить внимание библиотеке GTK+

Она доступна не только для Явы, но и многих других языков: C++,C и т.д.

Написание Desktop»ных приложений с помощью GTK следует использовать если приложение рассчитано для работы под средой GNOME.

Сама GTK+ считается одной из самых легких для освоения библиотек под Jav»у.

Основа работы с библиотекой:

Для начала нужно подключить саму библиотеку со всеми ее вытекающими:

import org.gnome.gdk.Event ;
import org.gnome.gtk.Gtk ;
import org.gnome.gtk.Widget ;
import org.gnome.gtk.Window ;
import org.gnome.gtk.WindowPosition ;

Если вышла ошибка, то скорее всего у вас просто не установлена библиотека.

Если юзаете систему типа Debian или Ubuntu, то вам поможет простая команда из терминала:
apt-get install libjava-gnome-java

После этого проблем быть не должно.

public class DesktopExample extends Window <

SetTitle( «Пример окна на GTK и Гноме» ) ; // Название приложения

Connect(new Window .DeleteEvent () <
public boolean onDeleteEvent(Widget source, Event event) <
Gtk.mainQuit () ;
return false ;
>
> ) ;


SetDefaultSize(250 , 150 ) ; // Размер
setPosition(WindowPosition.CENTER ) ; //Позиция при запуске, в данном случае центр
show() ;
>

В конечном итоге получаем пустое окошко.

AWT — считается оригинальной системой для разработки графических интерфейсов, ее ругают из-за того, что она
не всегда стабильно работает на разных платформах, но сейчас таких проблем вроде не наблюдается и работать с ней удобно.
Имхо, это мой выбор.
SWT — это детище от IBM, долизанная и перелизанная система, обычно отличается стабильностью при работе и легкой в освоении.
Но SWT тяжеловеснее AWT, обладает большим функционалом, в следствии чего сложней AWT.
Но ее я бы не стал использовать часто, хотя она довольно популярна и держит свои позиции.

Мастер Йода рекомендует:  12 лучших бесплатных расширений Joomla для создания меню

Вот пример окна на AWT:

// Подключаем всякие фичи, хотя swing тут лишний, это я в своем приложении прикручивал
// Это просто обрезок кода
import java.awt.EventQueue ;
import javax.swing.* ;
import java.awt.* ;
import java.awt.event.* ;

public class Main <

private JFrame frame;

/**
* Запуск приложения, что-то типо первоначальной настройки, создание окна и типа того.
*/
public static void main(String args) <

EventQueue .invokeLater (new Runnable () <
public void run() <
try <
Main window = new Main() ;
window.frame .setVisible (true ) ;
> catch (Exception e) <
e.printStackTrace () ;
>

/**
* Вызываем саму инициализацю
*/
public Main() <

/**
* Инициализация окна
*/
private void initialize() <
frame = new JFrame ( «Чистое окно сгенерированное через Eclipse» ) ; // Делаем новое окно с названием
frame.setBounds (100 , 100 , 450 , 300 ) ;
frame.setSize (800 , 800 ) ; // Размеры
frame.setDefaultCloseOperation (JFrame .EXIT_ON_CLOSE ) ;

А вот нам пример окна на SWT:

//Подключаем всякие фичи для веселой жизни
import org.eclipse.swt.SWT ;
import org.eclipse.swt.widgets.Display ;
import org.eclipse.swt.widgets.Shell ;
import org.eclipse.swt.widgets.Text ;

public class ExampleApp <

public static void main (String args) <
Display display = new Display () ;
Shell shell = new Shell(display) ;

Shell.pack () ; //Подготовка (первичная)
shell.open () ; //Подготавливаем
while (! shell.isDisposed () ) < //Запускаем
if (! display.readAndDispatch () ) display.sleep () ; //Спим до поры, до времени
>
display.dispose () ;
>
>

Она в приципе тоже не сложная, мультиплатформенная. Отличается большим количеством фич и малым количеством подключаемых пополнений.

Вот пример окна со swing»ом:

import javax.swing.JFrame ;
import javax.swing.SwingUtilities ;

public class Example extends JFrame <

public Example() <
setTitle( «Пример приложения со Свингой» ) ;
setSize(300 , 200 ) ;
setLocationRelativeTo(null ) ;
setDefaultCloseOperation(EXIT_ON_CLOSE) ;
>

public static void main(String args) <
SwingUtilities .invokeLater (new Runnable () <
public void run() <
Example ex = new Example() ;
ex.setVisible (true ) ;
>
> ) ;
>
>

Это был основной список графических сред на Java. Почти все представленные здесь «штуки» мультиплатформенны
и работают на любом компьютере — Win, Linux, Mac.

Теги: java , java библиотеки, графические интерфейсы java

Графический интерфейс в Java прошел весьма тернистый путь развития и становления. Долгое время его обвиняли в медленной работе, жадности к ресурсам системы и ограниченной функциональности.

Java AWT

Первой попыткой Sun создать графический интерфейс для Java была библиотека AWT (Abstract Window Toolkit) — инструментарий для работы с различными оконными средами. Sun сделал прослойку на Java, которая вызывает методы из библиотек, написанных на С. Библиотечные методы AWT создают и используют графические компоненты операционной среды. С одной стороны, это хорошо, так как программа на Java похожа на остальные программы в рамках одной ОС. Но при запуске ее на другой платформе могут возникнуть различия в размерах компонентов и шрифтов, которые будут портить внешний вид программы.

Чтобы обеспечить мультиплатформенность AWT интерфейсы вызовов компонентов были унифицированы, вследствии чего их функциональность получилась немного урезанной. Да и набор компонентов получился довольно небольшой. Так например, в AWT нет таблиц, а в кнопках не поддерживается отображение иконок. Тем не менее пакет java.awt входит в Java с самого первого выпуска и его можно использовать для создания графических интерфейсов.

Таким образом, компоненты AWT не выполняют никакой «работы». Это просто «Java-оболочка» для элементов управления той операционной системы, на которой они работают. Все запросы к этим компонентам перенаправляются к операционной системе, которая и выполняет всю работу.

Использованные ресурсы AWT старается освобождать автоматически. Это немного усложняет архитектуру и влияет на производительность. Написать что-то серьезное с использованием AWT будет несколько затруднительно. Сейчас ее используют разве что для апплетов.

Основные концепции SWING

Вслед за AWT Sun разработала графическую библиотеку компонентов Swing , полностью написанную на Java. Для отрисовки используется 2D, что принесло с собой сразу несколько преимуществ. Набор стандартных компонентов значительно превосходит AWT по разнообразию и функциональности. Swing позволяет легко создавать новые компоненты, наследуясь от существующих, и поддерживает различные стили и скины.

Создатели новой библиотеки пользовательского интерфейса Swing не стали «изобретать велосипед» и в качестве основы для своей библиотеки выбрали AWT. Конечно, речь не шла об использовании конкретных тяжеловесных компонентов AWT (представленных классами Button, Label и им подобными). Нужную степень гибкости и управляемости обеспечивали только легковесные компоненты. На диаграмме наследования представлена связь между AWT и Swing.

Важнейшим отличием Swing от AWT является то, что компоненты Swing вообще не связаны с операционной системой и поэтому гораздо более стабильны и быстры. Такие компоненты в Java называются легковесными (lightweight), и понимание основных принципов их работы во многом объяснит работу Swing.

Swing контейнеры высшего уровня

Для создания графического интерфейса приложения необходимо использовать специальные компоненты библиотеки Swing, называемые контейнерами высшего уровня (top level containers). Они представляют собой окна операционной системы, в которых размещаются компоненты пользовательского интерфейса. К контейнерам высшего уровня относятся окна JFrame и JWindow, диалоговое окно JDialog, а также апплет JApplet (который не является окном, но тоже предназначен для вывода интерфейса в браузере, запускающем этот апплет). Контейнеры высшего уровня Swing представляют собой тяжеловесные компоненты и являются исключением из общего правила. Все остальные компоненты Swing являются легковесными.

Простой Swing пример создания оконного интерфейса JFrame .

Import java.awt.Dimension; import javax.swing.JFrame; import javax.swing.JLabel; public ); frame.getContentPane().add(label); frame.setPreferredSize(new Dimension(200, 100)); frame.pack(); frame.setVisible(true); > public static void main(String args) < JFrame.setDefaultLookAndFeelDecorated(true); javax.swing.SwingUtilities.invokeLater(new Runnable() < public void run() < createGUI(); >>); > >

Конструктор JFrame() без параметров создает пустое окно. Конструктор JFrame(String title) создает пустое окно с заголовком title. Чтобы создать простейшую программу с пустым окном необходимо использовать следующие методы:

  • setSize(int width, int height) — определение размеров окна;
  • setDefaultCloseOperation(int operation) — определение действия при завершении программы;
  • setVisible(boolean visible) — сделать окно видимым.

Если не определить размеры окна, то оно будет иметь нулевую высоту независимо от того, что в нем находится. Размеры окна включают не только «рабочую» область, но и границы и строку заголовка.

Метод setDefaultCloseOperation определяет действие, которое необходимо выполнить при «выходе из программы». Для этого следует в качестве параметра operation передать константу EXIT_ON_CLOSE, описанную в классе JFrame.

По умолчанию окно создается невидимым. Чтобы отобразить окно на экране вызывается метод setVisible с параметром true. Если вызвать его с параметром false, окно станет невидимым.

Графический интерфейс java swing примера создания окна JFrame представлен на следующем рисунке.

Для подключения библиотеки Swing в приложении необходимо импортировать библиотеку javax.swing .

Каждый раз, как только создается контейнер высшего уровня, будь то обычное окно, диалоговое окно или апплет, в конструкторе этого контейнера создается корневая панель JRootPane . Контейнеры высшего уровня Swing следят за тем, чтобы другие компоненты не смогли «пробраться» за пределы JRootPane.

Корневая палель JRootPane добавляет в контейнеры свойство «глубины», обеспечивая возможность не только размещать компоненты один над другим, но и при необходимости менять их местами, увеличивать или уменьшать глубину расположения компонентов. Такая возможность необходима при создании многодокументного приложения Swing , у которого окна представляют легковесные компоненты, располагающиеся друг над другом, а также выпадающими (контекстными) меню и всплывающими подсказками.

На следующем рисунке наглядно представлена структура корневой панели JRootPane .

Корневая панель JRootPane представляет собой контейнер, унаследованный от базового класса Swing JComponent. В этом контейнере за расположение компонентов отвечает специальный менеджер расположения, реализованный во внутреннем классе RootPaneLayout. Этот менеджер расположения отвечает за то, чтобы все составные части корневой панели размещались так, как им следует: многослойная панель занимает все пространство окна; в ее слое FRAME_CONTENT_LAYER располагаются строка меню и панель содержимого, а над всем этим располагется прозрачная панель.

Все составляющие корневой панели JRootPane можно получить или изменить. Для этого у нее есть набор методов get/set. Программным способом JRootPane можно получить с использованием метода getRootPane().

Кроме контейнеров высшего уровня корневая панель применяется во внутренних окнах JInternalFrame, создаваемых в многодокументных приложениях и располагающихся на «рабочем столе» JDesktopPane. Это позволяет забыть про то, что данные окна представляют собой обычные легковесные компоненты, и работать с ними как с настоящими контейнерами высшего уровня.

Многослойная панель JLayeredPane

В основании корневой панели (контейнера) лежит так называемая многослойная панель JLayeredPane , занимающая все доступное пространство контейнера. Именно в этой панели располагаются все остальные части корневой панели, в том числе и все компоненты пользовательского интерфейса.

JLayeredPane используется для добавления в контейнер свойства глубины (depth). To есть, многослойная панель позволяет организовать в контейнере третье измерение, вдоль которого располагаются слои (layers) компонента. В обычном контейнере расположение компонента определяется прямоугольником, который показывает, какую часть контейнера занимает компонент. При добавлении компонента в многослойную панель необходимо указать не только прямоугольник, занимаемый компонентом, но и слой, в котором он будет располагаться. Слой в многослойной панели определяется целым числом. Чем больше определяющее слой число, тем выше слой находится.

Первый добавленный в контейнер компонент оказывается выше компонентов, добавленных позже. Чаще всего разработчик не имеет дело с позициями компонентов. При добавлении компонентов их положение меняются автоматически. Тем не менее многослойная панель позволяет менять позиции компонентов динамически, уже после их добавления в контейнер.

Возможности многослойной панели широко используются некоторыми компонентами Swing . Особенно они важны для многодокументных приложений, всплывающих подсказок и меню. Многодокументные Swing приложения задействуют специальный контейнер JDesktopPane («рабочий стол»), унаследованный от JLayeredPane , в котором располагаются внутренние окна Swing. Самые важные функции многодокументного приложения — расположение «активного» окна над другими, сворачивание окон, их перетаскивание — обеспечиваются механизмами многослойной панели. Основное преимущество от использования многослойной панели для всплывающих подсказок и меню — это ускорение их работы. Вместо создания для каждой подсказки или меню нового тяжеловесного окна, располагающегося над компонентом, в котором возник запрос на вывод подсказки или меню, Swing создает быстрый легковесный компонент. Этот компонент размещается в достаточно высоком слое многослойной панели выше в стопке всех остальных компонентов и используется для вывода подсказки или меню.

Многослойная панель позволяет организовать неограниченное количество слоев. Структура JLayeredPane включает несколько стандартных слоев, которые и используются всеми компонентами Swing, что позволяет обеспечить правильную работу всех механизмов многослойной панели. Стандартные слои JLayeredPane представлены на следующем рисунке.

Слой Default используется для размещения всех обычных компонентов, которые добавляются в контейнер. В этом слое располагаются внутренние окна многодокументных приложений.

Слой Palette предназначен для размещения окон с набором инструментов, которые обычно перекрывают остальные элементы интерфейса. Создавать такие окна позволяет панель JDesktopPane, которая размещает их в этом слое.

Слой Modal планировался для размещения легковесных модальных диалоговых окон. Однако такие диалоговые окна пока не реализованы, так что этот слой в Swing в настоящее время не используется.

Наиболее часто используемый слой, служащий для размещения всплывающих меню и подсказок.

Самый верхний слой. Предназначен для операций перетаскивания (drag and drop), которые должны быть хорошо видны в интерфейсе программы.

Небольшой пример JLayeredPane с многослойной панелью показывает, как добавлять компоненты в различные слои и как слои располагаются друг над другом:

Import javax.swing.*; import java.awt.*; // класс рисования двух типов фигур с текстом ); // определение местоположения фигур в окне figure1.setBounds(10, 40, 120, 120); figure2.setBounds(60, 120, 160, 180); figure3.setBounds(90, 55, 250, 180); // добавление фигур в различные слои lp.add(figure1, JLayeredPane.POPUP_LAYER); lp.add(figure2, JLayeredPane.PALETTE_LAYER); lp.add(figure3, JLayeredPane.PALETTE_LAYER); // смена позиции одной из фигур lp.setPosition(figure3, 0); // определение размера и открытие окна setSize(280, 250); setVisible(true); > public static void main(String args) < JFrame.setDefaultLookAndFeelDecorated(true); new JLayeredPaneTest(); >>

В примере создается небольшое окно JFrame и в многослойную панель добавляется несколько компонентов Figure. Чтобы получить многослойную панель в любом контейнере Swing высшего уровня, достаточно вызвать метод getLayeredPane() .

Вспомогательный класс Figure наследует свойства базового класса JComponent и позволяет различными цветами рисовать фигуры двух типов (круги и прямоугольники). Параметры для прорисовки фигур задаются в конструкторе класса.

При определении интерфейса создаются три фигуры разного цвета (два круга и прямоугольник). Круг размещается в слое POPUP_LAYER, а прямоугольники — в слое PALETTE_LAYER. При размещении компонентов указываются их абсолютные экранные координаты, потому что в многослойной панели обычные менеджеры расположения не работают.

В завершении позиция одного из прямоугольников меняется так, чтобы он был первым в слое, хотя изначально добавлялся вторым. Запустив приложение, вы увидите, что многослойная панель работает и аккуратно располагает компоненты согласно их слоям и позициям.

В обычных приложениях многослойная панель редко используется напрямую, в них она выполняет свои функции незаметно. Тем не менее, иногда она помогает создать удивительные эффекты и необычные интерфейсы, позволяя, например, разместить поверх обычных компонентов анимацию или видео, не требуя для этого от разработчика нечеловеческих усилий и ухищрений.

Панель содержимого ContentPane

Панель содержимого ContentPane — это следующая часть корневой панели, которая используется для размещения компонентов пользовательского интерфейса программы. ContentPane занимает большую часть пространства многослойной панели (за исключением места, занимаемого строкой меню). Чтобы панель содержимого не закрывала добавляемые впоследствии в окно компоненты, многослойная панель размещает ее в специальном очень низком слое с названием FRAME_CONTENT_LAYER, с номером -30000.

Обратиться к панели содержимого можно методом getContentPane() класса JFrame. С помощью метода add(Component component) можно добавить на нее любой элемент управления. Заменить ContentPane любой другой панелью типа JPanel можно методом setContentPane()

Пример добавления кнопки в панель содержимого:

JButton newButton = new JButton(); getContentPane().add(newButton);

В результате получим окно с кнопкой. Кнопка занимает всю доступную площадь окна. Такой эффект полезен не во всех программах, поэтому необходимо использовать различные способы расположения элементов на панели.

Панель содержимого можно полностью заменить. Рассмотрим следующий Swing пример использования панели содержимого ContentPane .

Import javax.swing.*; public )); // Замена панели содержимого setContentPane(contents); // Определение размера окна setSize(200, 100); // Открытие окна setVisible(true); > public static void main(String args) < JFrame.setDefaultLookAndFeelDecorated(true); new ContentPaneAdd(); >>

В примере создается небольшое окно и панель с двумя кнопками, которая затем методом setContentPane() заменяет панель содержимого окна. Таким образом была использована замена вместо более простого добавления — вызова метода add(). Интерфейс окна представлен на следующем скриншоте.

Панель содержимого ContentPane сама собой не представляет ничего особенного. Необходимо лишь помнить, что компоненты добавляются именно в нее.

Прозрачная панель JOptionPane

Прозрачная панель JOptionPane размещается корневой панелью выше всех элементов многослойной панели. За размещением JOptionPane следит корневая панель, которая размещает прозрачную панель выше многослойной панели, причем так, чтобы она полностью закрывала всю область окна, включая и область, занятую строкой меню.

JOptionPane используется в приложениях достаточно редко, поэтому по умолчанию корневая панель делает ее невидимой, что позволяет уменьшить нагрузку на систему рисования. Следует иметь в виду, что если вы делаете прозрачную панель видимой, нужно быть уверенным в том, что она прозрачна (ее свойство opaque равно false), поскольку в противном случае она закроет все остальные элементы корневой панели, и остальной интерфейс будет невидим.

В каких случаях можно использовать прозрачную панель JOptionPane ? С ее помощью можно определять функции приложения, для реализации которых «с нуля» понадобились бы серьезные усилия. Прозрачную панель можно приспособить под автоматизированное тестирование пользовательского интерфейса. Синтезируемые в ней события позволяют отслеживать промежуточные отладочные результаты. Иногда такой подход гораздо эффективнее ручного тестирования.

Прозрачная панель JOptionPane может быть использована для эффектной анимации, «плавающей» поверх всех компонентов, включая строку меню, или для перехвата событий, если некоторые из них необходимо обрабатывать перед отправкой в основную часть пользовательского интерфейса.

Пример использования прозрачной панели Swing JOptionPane:

// Использование прозрачной панели JOptionPane import java.awt.Dimension; import java.awt.Font; import java.awt.event.WindowEvent; import java.awt.event.WindowListener; import javax.swing.JDialog; import javax.swing.JFrame; import javax.swing.JLabel; import javax.swing.JOptionPane; import javax.swing.UIManager; public , FONT); JFrame.setDefaultLookAndFeelDecorated(true); JDialog.setDefaultLookAndFeelDecorated(true); createGUI(); > >); > >

Если методу setDefaultCloseOperation передать константу JFrame.EXIT_ON_CLOSE , то при закрытии окна приложение будет прекращать работу. В примере этому методу передается константа JFrame.DO_NOTHING_ON_CLOSE , чтобы при закрытии окна ничего не происходило. Выход из приложения в примере осуществляется из JFrame слушателя WindowListener в методе windowClosing . При закрытии окна вызывается метод windowClosing с параметром WindowEvent event, который в прозрачной панели Swing JOptionPane открывает диалоговое окно подтверждения.

На следующем скриншоте представлены два окна приложения. Верхнее главное окно. При закрытии данного окна открывается нижнее диалоговое окно подтверждения намерения.

Строка меню JMenuBar

Одной из важных особенностей использования корневой панели JRootPane в Swing, является необходимость размещения в окне строки меню JMenuBar . Серьезное приложение нельзя построить без какого-либо меню для получения доступа к функциям программы. Библиотека Swing предоставляет прекрасные возможности для создания удобных меню JMenuBar, которые также являются легковесными компонентами.

Строка меню JMenuBar размещается в многослойной панели в специальном слое FRAME_CONTENT_LAYER и занимает небольшое пространство в верхней части окна. По размерам в длину строка меню равна размеру окна. Ширина строки меню зависит от содержащихся в ней компонентов.

Корневая панель следит, чтобы панель содержимого и строка меню JMenuBar не перекрывались. Если строка меню не требуется, то корневая панель использует все пространство для размещения панели содержимого.

Примеры Swing

Исходные коды примеров, рассмотренных в тексте страницы, можно скачать .

Краткий обзор GUI-фреймворков для Java и мое первое простенькое GUI-приложение на Swing. GUI в Java c помощью JFace: Создание окна приложения

Java Swing is a lightweight Graphical User Interface (GUI) toolkit that includes a rich set of widgets. It includes package lets you make GUI components for your Java applications, and It is platform independent.

The Swing library is built on top of the Java Abstract Widget Toolkit (AWT ), an older, platform dependent GUI toolkit. You can use the Java GUI components like button, textbox, etc. from the library and do not have to create the components from scratch.

In this tutorial, you will learn-

Java Swing class Hierarchy Diagram

All components in swing are JComponent which can be added to container classes.

What is a container class?

Container classes are classes that can have other components on it. So for creating a GUI, we need at least one container object. There are 3 types of containers.

  1. Panel : It is a pure container and is not a window in itself. The sole purpose of a Panel is to organize the components on to a window.
  2. Frame : It is a fully functioning window with its title and icons.
  3. Dialog : It can be thought of like a pop-up window that pops out when a message has to be displayed. It is not a fully functioning window like the Frame.

Java GUI Example

Example : To learn to design GUI in Java
Step 1) Copy the following code into an editor

Import javax.swing.*; ); frame.getContentPane().add(button); // Adds Button to content pane of frame frame.setVisible(true); > >

Step 2) Save, Compile, and Run the code.
Step 3) Now let»s Add a Button to our frame. Copy following code into an editor

Import javax.swing.*; ); frame.getContentPane().add(button1); frame.setVisible(true); > >

Step 4) Execute the code. You will get a big button

Step 5) How about adding two buttons? Copy the following code into an editor.

Import javax.swing.*; ); frame.getContentPane().add(button1); frame.getContentPane().add(button2); frame.setVisible(true); > >

Step 6) Save , Compile , and Run the program.
Step 7) Unexpected output =? Buttons are getting overlapped.

Java Layout Manger

The Layout manager is used to layout (or arrange) the GUI java components inside a container.There are many layout managers, but the most frequently used are-

Java BorderLayout

Java FlowLayout


Java GridBagLayout

It is the more sophisticated of all layouts. It aligns components by placing them within a grid of cells, allowing components to span more than one cell.

Step 8) How about creating a chat frame like below?

Try to code yourself before looking at the program below.

//Usually you will require both swing and awt packages // even if you are working with just swings. import javax.swing.*; import java.awt.*; ); panel.add(label); // Components Added using Flow Layout panel.add(label); // Components Added using Flow Layout panel.add(tf); panel.add(send); panel.add(reset); // Text Area at the Center JTextArea ta = new JTextArea(); //Adding Components to the frame. frame.getContentPane().add(BorderLayout.SOUTH, panel); frame.getContentPane().add(BorderLayout.NORTH, mb); frame.getContentPane().add(BorderLayout.CENTER, ta); frame.setVisible(true); > >

Так исторически сложилось, что с UI мне приходилось работать очень мало. Видимо, поэтому мне так интересные всякие там Qt и wxWidgets — все кажется новым, интересным, необычным. Впрочем, коль скоро я взялся за изучение Java , речь сегодня пойдет не о Qt и не о wxWidgets, а о Swing. Сегодня совместными усилиями мы напишем простенькое GUI-приложение на Java, с кнопочками, списками и даже умеющее менять шкурки!

Ситуация с GUI фреймворками в мире Java несколько запутанная. Насколько я смог разобраться, дела обстоят следующим образом.

  • AWT (Abstract Window Toolkit) был первым GUI фреймворком. Идея была правильная — AWT использует нативные контролы, то есть, они выглядят и физически являются родными, независимо от того, где вы запускаете свое приложение. К сожалению, оказалось, что (1) общих для различных окружений контролов мало и (2) писать кроссплатформенные нативные интерфейсы так, чтобы ничего не поползло и не разъехалось, очень сложно;
  • Поэтому на смену AWT пришел Swing . Swing использует формочки, создаваемые AWT, на которых он своими силами рисует контролы. Работает это хозяйство, понятно дело, медленнее, но зато UI становится намного более портабельным. Swing предлагает на выбор программисту множество Look&Feel, благодаря которым можно сделать либо так, чтобы приложение выглядело и вело себя одинаково как под Windows, так и под Linux, либо чтобы приложение было очень похоже на нативное независимо от того, где его запускают. В первом случае приложение проще отлаживать, во втором — становятся счастливее пользователи. Кстати, изначально Swing был сделан парнями из Netscape;
  • SWT (Standard Widget Toolkit) — фреймворк, написанный в IBM и используемый в Eclipse. Как и в AWT, используются нативные контролы. SWT не входит в JDK и использует JNI, поэтому не очень соответствует идеологии Java «написано однажды, работает везде». Вроде как при очень сильном желании можно запаковать в пакет реализацию SWT для всех-всех-всех платформ, и тогда приложение вроде как даже станет портабельным, но только до тех пор, пока не появится какая-нибудь новая операционная система или архитектура процессора;
  • JavaFX активно пилится в Oracle и позиционируется, как скорая замена Swing. Идеологически JavaFX похож на Swing, то есть, контролы не нативные. Среди интересных особенностей JavaFX следует отметить хардверное ускорение, создание GUI при помощи CSS и XML (FXML), возможность использовать контролы JavaFX’а в Swing’е, а также кучу новых красивых контролов, в том числе для рисования диаграмм и 3D. Видео с более детальным обзором JavaFX можно . Начиная с Java 7, JavaFX является частью JRE/JDK ;
  • NetBeans Platform (не путать с NetBeans IDE!) — это такая штука, которая, как я понял, работает поверх Swing и JavaFX, предоставляет как бы более удобный интерфейс для работы с ними, а также всякие дополнительные контролы. В одном приложении, использующем NetBeans Platform, я видел возможность перетаскивать вкладки drug&drop’ом, располагая панели в окне подобно тому, как это делают тайловые оконные менеджеры . По всей видимости, сам Swing так не умеет. Почитать про NetBeans Platform поподробнее ;

Не исключено, что есть и другие фреймворки. Наиболее каноничным на сегодняшний день является Swing, поэтому им и займемся.

Выше что-то говорилось про какие-то там Look&Feel. Чтобы лучше понять, о чем идет речь, давайте напишем программу, которая выводит список этих самых Look&Feel и позволит переключаться между ними прямо в процессе работы программы.

Наше приложение будет выглядеть следующим образом под Ubuntu:

А так оно будет выглядеть при запуске под Windows:

Как видите, JRE под Windows и Linux включают в себя разный набор L&F. Кроме того, вы можете подключить сторонний Look&Feel или даже написать свой. По умолчанию используется L&F Metal, который во всех ОС и оконных менеджерах выглядит более-менее одинаково. Если вам больше нравятся круглые кнопочки, то вместо Metal можно использовать Look&Feel Nimbus. Если вам хочется, чтобы приложение было похоже на нативное, то под Linux следует выбрать L&F GTK+ (интересно, а если пользователь сидит под KDE?), а под Windows — L&F Windows. Неплохой идеей, видимо, будет предусмотреть в вашей программе возможность переключаться между различными L&F. С другой стороны, при этом придется тестировать работу приложения со всеми этими L&F.

Давайте посмотрим на исходный код приложения. Коллеги UI-щики заверили меня, что никаких WYSIWYG редакторов они не используют, а если используют, то разве что для быстрого прототипирования. Из неплохих WYSIWYG редакторов назывался JFormDesigner . Говорят, генерируемый им код даже похож на код, написанный человеком, а не адовую().последовательность().вызовов().методов(). В общем, весь код писался лапками в IntelliJ IDEA .

public static void main(String args) <

В Swing и AWT, если мы хотим что-то поменять в UI, мы должны делать это из event dispatching thread. Статический метод invokeLater принимает класс, реализующий интерфейс Runnable, и вызывает его метод run() внутри event dispatching thread. Если вам не знаком приведенный выше синтаксис, то это такой способ в Java объявить класс, не присваивая ему имени. Классы без имени называются анонимными. Часто анонимные классы в Java выполняют ту же роль, что играют лямда-фукнции в функциональных языках программирования. Помимо прочего, поддерживаются и замыкания. Интересно, что, в отличие от лямбд, анонимные классы в Java позволяют передать сразу пачку методов. Притом, при помощи наследования и абстрактных классов, для всех или части методов можно взять их реализацию по умолчанию.

Аннотация @Override проверяет, что метод run() действительно переопределит метод интерфейса Runnable. Без нее при переопределении метода мы можем случайно сделать опечатку и определить новый метод вместо того, чтобы переопределить существующий. Впрочем, в данном конкретном случае аннотация, видимо, не очень полезна, и, наверное, даже является лишней.

В итоге event dispatching thread вызовет метод createGUI(), полный код которого следующий:

private static void createGUI() <
JList list = new JList<> () ;
list.setSelectionMode (ListSelectionModel .SINGLE_SELECTION ) ;

JScrollPane listScrollPane = new JScrollPane (list) ;

JPanel topPanel = new JPanel () ;
topPanel.setLayout (new BorderLayout () ) ;
topPanel.add (listScrollPane, BorderLayout .CENTER ) ;

ActionListener updateButtonListener = new UpdateListAction(list) ;
updateButtonListener.actionPerformed (
new ActionEvent (list, ActionEvent .ACTION_PERFORMED , null )
) ;

JButton updateListButton = new JButton («Update list» ) ;
JButton updateLookAndFeelButton = new JButton («Update Look&Feel» ) ;

JPanel btnPannel = new JPanel () ;
btnPannel.setLayout (new BoxLayout (btnPannel, BoxLayout .LINE_AXIS ) ) ;
btnPannel.add (updateListButton) ;
btnPannel.add (Box .createHorizontalStrut (5 ) ) ;
btnPannel.add (updateLookAndFeelButton) ;

JPanel bottomPanel = new JPanel () ;
bottomPanel.add (btnPannel) ;

JPanel panel = new JPanel () ;
panel.setBorder (BorderFactory .createEmptyBorder (5 ,5 ,5 ,5 ) ) ;
panel.setLayout (new BorderLayout () ) ;
panel.add (topPanel, BorderLayout .CENTER ) ;
panel.add (bottomPanel, BorderLayout .SOUTH ) ;

JFrame frame = new JFrame («Look&Feel Switcher» ) ;
frame.setMinimumSize (new Dimension (300 , 200 ) ) ;
frame.setDefaultCloseOperation (WindowConstants .EXIT_ON_CLOSE ) ;
frame.add (panel) ;
frame.pack () ;
frame.setVisible (true ) ;

UpdateListButton.addActionListener (updateButtonListener) ;
updateLookAndFeelButton.addActionListener (
new UpdateLookAndFeelAction(frame, list)
) ;
>

Тут, в общем-то, нет ничего супер сложного. Создаются кнопки, список, список заворачивается в JScrollPane, чтобы у списка была прокрутка. Элементы управления располагаются во фрейме при помощи панелей. Панели могут иметь различные лайоуты, здесь мы использовали BorderLayout и BoxLayout . Принцип аналогичен тому, что используется в wxWidgets .

Для реакции на различные события, например, нажатия кнопок, используются классы, реализующие интерфейс ActionListener. В приведенном выше коде используется два таких класса — UpdateListAction и UpdateLookAndFeelAction. Как нетрудно догадаться по названию, первый класс отвечает за обработку нажатий на левую кнопку «Update list», второй — на правую кнопку «Update Look&Feel». ActionListener’ы привязываются к кнопкам при помощи метода addActionListener. Поскольку сразу после запуска приложения нам хочется увидеть список доступных Look&Feel, мы эмулируем нажатие на кнопку «Update list». Для этого мы создаем экземпляр класса ActionEvent и передаем его в качестве аргумента методу actionPerformed класса UpdateListAction.

Реализация класса UpdateListAction следующая:

static class UpdateListAction implements ActionListener <
private JList list;

public UpdateListAction(JList list) <
this .list = list;
>

@Override
public void actionPerformed(ActionEvent event) <
ArrayList lookAndFeelList = new ArrayList<> () ;
UIManager.LookAndFeelInfo infoArray =

int lookAndFeelIndex = 0 ;
int currentLookAndFeelIndex = 0 ;
String currentLookAndFeel >UIManager .getLookAndFeel () .getClass () .getName () ;

for ( UIManager.LookAndFeelInfo info : infoArray) <
if (info.getClassName () .equals (currentLookAndFeelClassName) ) <
currentLookAndFeelIndex = lookAndFeelIndex;
>
lookAndFeelList.add (info.getName () ) ;
lookAndFeelIndex++;
>

String listDataArray = new String [ lookAndFeelList.size () ] ;
final String newListData =
lookAndFeelList.toArray (listDataArray) ;
final int newSelectedIndex = currentLookAndFeelIndex;

SwingUtilities .invokeLater (new Runnable () <
@Override
public void run() <
list.setListData (newListData) ;
list.setSelectedIndex (newSelectedIndex) ;
>
> ) ;
>
>

В конструкторе передается указатель на список, в котором мы будет отображать доступные Look&Feel. На самом деле, поскольку UpdateListAction является вложенным классом нашего основного класса LookAndFeelSwitcher, у него есть возможность обращаться напрямую к полям создавшего его экземпляра LookAndFeelSwitcher. Но функциональщик внутри меня сопротивляется такому подходу, поэтому я решил передать ссылку на список явно через конструктор.

Метод actionPerformed будет вызываться при нажатии на кнопку. Код этого метода довольно тривиален — мы просто используем статические методы класса UIManager для получения списка доступных Look&Feel, а также определения текущего Look&Feel. Затем обновляется содержимое списка и выбранный в нем элемент. Тут нужно обратить внимание на два момента. Во-первых, каждый Look&Feel имеет имя и имя класса , это разные вещи. Пользователю мы должны показывать имена, а при переключении Look&Feel использовать имя класса. Во-вторых, обратите внимание на то, как создаются final переменные newListData и newSelectedIndex, которые затем используются в анонимном классе. Это и есть тот самый аналог замыканий, речь о котором шла ранее. Очевидно, использование не final переменных в замыканиях привело бы к печальным последствиям.

Наконец, рассмотрим класс UpdateLookAndFeelAction:

static class UpdateLookAndFeelAction implements ActionListener <
private JList list;
private JFrame rootFrame;

public UpdateLookAndFeelAction(JFrame frame, JList list) <
this .rootFrame = frame;
this .list = list;
>

@Override
public void actionPerformed(ActionEvent e) <
String lookAndFeelName = list.getSelectedValue () ;
UIManager.LookAndFeelInfo infoArray =
UIManager .getInstalledLookAndFeels () ;

for ( UIManager.LookAndFeelInfo info : infoArray) <
if (info.getName () .equals (lookAndFeelName) ) <
String message = «Look&feel was changed to » + lookAndFeelName;
try <
UIManager .setLookAndFeel (info.getClassName () ) ;
SwingUtilities .updateComponentTreeUI (rootFrame) ;
> catch (ClassNotFoundException e1) <
message = «Error: » + info.getClassName () + » not found» ;
> catch (InstantiationException e1) <
message = «Error: instantiation exception» ;
> catch (IllegalAccessException e1) <
message = «Error: illegal access» ;
> catch ( UnsupportedLookAndFeelException e1) <
message = «Error: unsupported look and feel» ;
>
JOptionPane .showMessageDialog (null , message) ;
break ;
>
>
>
>

Здесь мы просто (1) находим L&F с именем, равным имени, выбранному в списке, (2) меняем L&F при помощи static метода setLookAndFeel класса UIManager и (3) перерисовываем главный фрейм нашего UI, а также, рекурсивно, расположенные на нем элементы, при помощи static метода updateComponentTreeUI класса SwingUtilities. Наконец, мы уведомляем пользователя при помощи сообщения, все ли прошло успешно.

Также хотелось бы сказать пару слов об отладке GUI-приложений на Java, и не только GUI. Во-первых, в Swing есть такое волшебное сочетание клавиш Ctr + Shift + F1, которое выводит в stdout информацию о том, как расположены контролы. Очень полезно, если хочется слизать UI у конкурентов. Во-вторых, есть такой интересный хоткей Ctr + \. Если нажать его в консоли работающего приложения на Java, будут выведены все нитки и их стектрейсы. Удобно, если вы словили дэдлок. Наконец, в-третьих, во время разработки GUI бывает полезно разукрасить панели в разные цвета. Сделать это можно так:

buttonsPanel.setBackground (Color .BLUE ) ;

Мы догадываемся, что порядком утомили вас, рассказывая все время о программах вывода текстовых сообщений на консоль. На этом занятии эта «унылая» череда примеров будет, наконец, прервана: мы покажем как на Java создаются окна и вы убедитесь, что это простая задача. Вот наш код (обсуждать его мы начнем на следующем занятии, т.к. в нем много-много особенностей, знать которые действительно нужно):

public class MoneyForNothing extends JFrame <

setTitle («Добро пожаловать в Money for Nothing»);

setSize (new Dimension (600, 400));

public static void main (String args) <

MoneyForNothing mfn = new MoneyForNothing ();

А вот этот же код в окне редактирования FAR-а:

Кстати, рекомендуем сразу набирать исходные коды программ в кодировке CP1251 (или в просторечии, в кодировке Windows): переключение кодировок осуществляется клавишей F8, а текущая кодировка высвечивается в строке состояния над областью редактирования.

Точка входа осталась без изменений, а вот остальной код порядком изменился (но не будем забегать вперед). После компиляции и запуска вы должны увидеть следующее:

Поздравляем – всего в несколько строк вы создали настоящее графическое окно! Его можно перетаскивать, изменять размеры, сворачивать, разворачивать и закрывать. Правда, окно у нас получилось какое-то блеклое, прямо сказать — «страшненькое». Кроме того, окно выводится в левом верхнем углу экрана, а хотелось бы в центре – там им удобнее пользоваться, да и выглядит такой вывод приятнее. Так что давайте займемся небольшой «полировкой».

Сначала решим вторую задачу – центровка окна. Тут мы рекомендуем остановиться и подумать – как бы вы это сделали?

Подскажем, что в графической библиотеке Java есть есть метод setLocation, которому в качестве параметров передаются координаты верхнего левого угла окна (именно от этого угла производится размещение других графических элементов внутри окна). Но если задать эти параметры «в лоб», то почти наверняка ничего путного не получится т.к. на другом мониторе с другим разрешением окно окажется совсем не там, где вы рассчитывали. Следовательно, координаты нужно задавать умнее.

Все, что нужно для размещения окна по центру, это знать размеры самого окна (они, кстати, заданы в конструкторе и составляют прямоугольник 600 на 400 пикселей) и разрешение экрана, а потом, путем нехитрой арифметики, вычислить необходимые координаты левого верхнего угла. Это достигается путем размещения следующего кода

Dimension sSize = Toolkit.getDefaultToolkit ().getScreenSize (),

if (fSize.height > sSize.height)

if (fSize.width > sSize.w >

setLocation ((sSize.width — fSize.width)/2,

непосредственно за строкой setSize (new Dimension (600, 400)); в конструкторе. Внесите необходимые изменения в исходный код, откомпилируйте программу и запустите на исполнение; окно должно появиться в центре экрана монитора.

Теперь несколько слов о внешнем виде окна. Его странный вид объясняется тем, что разработчики Java стремились добиться того, чтобы вне зависимости от аппаратной платформы и программной «начинки», все графические элементы (окна, кнопки, списки и проч.) имели единую отрисовку и единую цветовую гамму. Для этого они разработали специальный стиль, который назвали «METAL». Если разработчик не предпримет специальных усилий, то элементы графического интерфейса в его программах будут выглядеть именно в этом стиле, без учета особенностей конкретных компьютеров и их программного обеспечения. В отдельных случаях в этом есть смысл, но все-таки, согласитесь, что гораздо лучше, если программа, запущенная на Windows будет похожа на windows-программу, а запущенная на LINUX будет похожа на linux-программу. Добиться этого легко. Все, что нужно — включить в точку входа, перед созданием экземпляра класса следующий код:

catch (Exception lfe) <>

Так мы и поступим. Теперь, после компиляции обновленной версии нашей программы и запуска ее на исполнение, графическое окно будет выглядеть гораздо «пристойнее»:

В зависимости от настройки свойств экрана вашего монитора отображение окна будет отличаться; мы используем классическую тему Windows XP. У вас это же окно может выглядеть, например, так:

Убедитесь, что все работает как ожидалось: окно выводится в центре экрана и его внешний вид соответствует ожидаемому.

На этом мы закончим наше первое занятие, посвященное графическим интерфейсам. В нем мы показали «фасад», однако совершенно оставили «за бортом» множество вопросов, которые чрезвычайно важны и без которых невозможно программирование на Java вообще и графических интерфейсов в частности. Мы начнем заниматься этими вопросами на следующем занятии, а пока – поиграйтесь с тем исходным кодом, который есть.

В качестве упражнения, рассчитайте, к примеру, координаты вывода нашего окна в правом нижнем углу экрана и проверьте результат.

Другое упражнение проще по исполнению, но вам нужно будет воспользоваться документацией (надо же когда-то начинать, в самом деле): сделайте так, чтобы нельзя было изменять размеры окна, т.е. чтобы область системных кнопок выглядела так, как на рисунке

(подсказка: ищите информацию по ключевым словам javax и JFrame). Так что, засучите рукава и удачи!

Может случиться, что сформированное окно будет полностью или частично невидимо (из-за того, что вы неправильно рассчитали координаты его вывода на экран). Кнопки управления окна могут также оказаться недоступными. Как же прервать работу приложения не снимая задачу в «Диспетчере задач» или не перезагружая компьютер?

Поскольку мы запускаем программы на исполнение из FAR-а, то прерывание исполнения программы на Java достигается нажатием комбинации клавиш Control-C (здесь «C» — латинская буква, не путайте ее со сходной по начертанию буквой кириллической).

В Java есть 2 основных пакета для создания графических интерфейсов (Graphics User Interface). Это Abstract Windows Toolkit (AWT) и Swing. AWT использует виджеты операционной системы, поэтому эта библиотека немного быстрее. Но на мой взгляд, Swing более хорошо спроектирован.

В данном туториале мы рассмотрим основные элементы библиотеки Swing и создадим простой интерфейс (GUI) в качестве примера.

Для группировки компонент интерфейса используются контейнеры (Container). Для создания основного контейнера для приложения чаще всего используется контейнер JFrame (есть еще JWindows и JApplet). Проще всего унаследоваться от JFrame тем самым получить доступ ко множеству методов, например:

setBounds(x, y, w, h) — указывает координаты верхней левой вершины окна, а также его ширину и высоту.

setResizable(bool) — указывает, можно ли изменять размер окна.

setTitle(str) — устанавливает название окна.

setVisible(bool) — собственно отображает окно.

setDefaultCloseOperation(operation) — указывает операцию, которая будет произведена при закрытии окна.

Основные элементы управления:

  • JLabel — элемент для отображения фиксированного текста;
  • JTextField — простой edit-box;
  • JButton — обычная кнопка (button);
  • JCheckBox — элемент выбора (аналог checkbox);
  • JRadioButton — радио кнопка

Как видите, все довольно просто и логично.

При отображении элементов управления используются специальные менеджеры — LayoutManager. У всех LayoutManager»ов есть методы для добавления у удаления элементов.

FlowLayout — используется для последовательного отображения элементов. Если элемент не помещается в конкретную строку, он отображается в следующей.

GridLayout — отображения элементов в виде таблицы с одинаковыми размерами ячеек.

BorderLayout — используется при отображении не более 5 элементов. Эти элементы располагаются по краям фрейма и в ценрте: North, South, East, West, Center.

BoxLayout — отображает элементы в виде рядка или колонки.

GridBagLayout — позволяет назначать месторасположение и размер каждого виджета. Это самый сложный, но и самый эффективный вид отображения.

Стоит еще обратить внимание на обработку событий. Для этого используются так называемые Event Listeners.

Ну все, довольно теории, перейдем к примеру GUI:

Import java.awt.*; import java.awt.event.*; import javax.swing.*; public , JOptionPane.PLAIN_MESSAGE); > > public static vo >

getContentPane возвращает контейнер верхнего уровня. ButtonGroup служит для создания группы взаимосвязанных радио-кнопок.

Внутренний класс ButtonActionListener реализует интерфейс ActionListener. Для этого необходимо предоставить имплементацию метода actionPerformed.

JOptionPane служит для отображения диалоговых окон.

Жду ваших вопросов и комментариев. Если вы хотите больше узнать о Swing, скажите об этом, и в скором времени я напишу еще одну статью с более сложными приемами и компонентами.

Библиотека Swing

Современные программы нуждаются в графическом интерфейсе пользователя (GUI). Пользователи отвыкли работать через консоль: они управляют программой и вводят входные данные посредством так называемых элементов управления (в программировании их также называют визуальными компонентами), к которым относятся кнопки, текстовые поля, выпадающие списки и т.д.

Каждый из современных языков программирования предоставляет множество библиотек для работы со стандартным набором элементов управления. Напомним, что под библиотекой в программировании набор готовых классов и интерфейсов, предназначенных для решения определенного круга задач.

В Java есть три библиотеки визуальных компонентов для создания графического интерфейса пользователя. Самая ранняя из них называется AWT. Считается, что при ее проектировании был допущен ряд недочетов, вследствие которых с ней довольно сложно работать. Библиотека Swing разработана на базе AWT и заменяет большинство ее компонентов своими, спроектированными более тщательно и удобно. Третья, самая новая библиотека, называется SWT.

Каждая библиотека предоставляет набор классов для работы с кнопками, списками, окнами, меню и т.д., но эти классы спроектированы по-разному: они имеют различный набор методов с разными параметрами, поэтому «перевести» программу с одной библиотеки на другую (например, с целью увеличения быстродействия) не так-то просто. Это почти как перейти с одного языка программирования на другой: все языки умеют делать одно и то же, но у каждого из них свой синтаксис, своя программная структура и свои многочисленные хитрости.

По этой причине вместо того, чтобы делать обзор всех трех библиотек, мы постараемся получше разобраться в одной из них — библиотеке Swing. Полноценный графический интерфейс может быть разработан с ее помощью.

Окно JFrame

Каждая GUI-программа запускается в окне и по ходу работы может открывать несколько дополнительных окон.

В библиотеке Swing описан класс JFrame , представляющий собой окно с рамкой и строкой заголовка (с кнопками «Свернуть», «Во весь экран» и «Закрыть»). Оно может изменять размеры и перемещаться по экрану.

В Swing есть еще несколько классов окон. Например, JWindow — простейшее окно, без рамки и без строки заголовка. Обычно с его помощью делается заставка к программе, которая перед запуском должна выполнить несколько продолжительных действий (например, загрузить информацию из БД).

Конструктор JFrame() без параметров создает пустое окно. Конструктор JFrame(String title) создает пустое окно с заголовком title .

Чтобы написать простейшую программу, выводящую на экран пустое окно, нам потребуется еще три метода:

setSize(int width, int height) — устанавливает размеры окна. Если не задать размеры, окно будет иметь нулевую высоту независимо от того, что в нем находится и пользователю после запуска придется растягивать окно вручную. Размеры окна включают не только «рабочую» область, но и границы и строку заголовка.

setDefaultCloseOperation(int operation) — позволяет указать действие, которое необходимо выполнить, когда пользователь закрывает окно нажатием на крестик. Обычно в программе есть одно или несколько окон при закрытии которых программа прекращает работу. Для того, чтобы запрограммировать это поведение, следует в качестве параметра operation передать константу EXIT_ON_CLOSE , описанную в классе JFrame .

setVisible(boolean visible) — когда окно создается, оно по умолчанию невидимо. Чтобы отобразить окно на экране, вызывается данный метод с параметром true . Если вызвать его с параметром false , окно снова станет невидимым.


Теперь мы можем написать программу, которая создает окно, выводит его на экран и завершает работу после того, как пользователь закрывает окно.

Мастер Йода рекомендует:  Как найти первую работу в IT план действий для начинающих

import javax.swing.*; public ); myWindow.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); myWindow.setSize(400, 300); myWindow.setVisible(true ); > >

Обратите внимание, для работы с большинством классов библиотеки Swing понадобится импортировать пакет java.swing.*

Как правило, перед отображением окна, необходимо совершить гораздо больше действий, чем в этой простой программке. Необходимо создать множество элементов управления, настроить их внешний вид, разместить в нужных местах окна. Кроме того, в программе может быть много окон и настраивать их все в методе main() неудобно и неправильно, поскольку нарушает принцип инкапсуляции: держать вместе данные и команды, которые их обрабатывают. Логичнее было бы, чтобы каждое окно занималось своими размерами и содержимым самостоятельно. Поэтому классическая структура программы с окнами выглядит следующим образом:

В файле SimpleWindow.java:

В файле Program.java:

public >Из примера видно, что окно описывается в отдельном классе, являющемся наследником JFrame и настраивающее свой внешний вид и поведение в конструкторе (первой командой вызывается конструктор суперкласса). Метод main() содержится в другом классе, ответственном за управление ходом программы. Каждый из этих классов очень прост, каждый занимается своим делом, поэтому в них легко разбираться и легко сопровождать (т.е. совершенствовать при необходимости).

Обратите внимание, что метод setVisible() не вызывается в классе SimpleWindow , что вполне логично: за тем, где какая кнопка расположена и какие размеры оно должно иметь, следит само окно, а вот принимать решение о том, какое окно в какой момент выводится на экран — прерогатива управляющего класса программы.

Панель содержимого

Напрямую в окне элементы управления не размещаются. Для этого служит панель содержимого, занимающая все пространство окна* . Обратиться к этой панели можно методом getContentPane() класса JFrame . С помощью метода add(Component component) можно добавить на нее любой элемент управления.

В примерах этого занятия мы будем использовать только один элемент управления — кнопку (не вдаваясь в подробности ее устройства). Кнопка описывается классом JButton и создается конструктором с параметром типа String — надписью.

Добавим кнопку в панель содержимого нашего окна командами:

JButton newButton = new JButton(); getContentPane().add(newButton);

В результате получим окно с кнопкой. Кнопка занимает всю доступную площадь окна. Такой эффект полезен не во всех программах, поэтому необходимо изучить различные способы расположения элементов на панели.

Класс Container (контейнер)

Элементы, которые содержат другие элементы, называются контейнерами. Все они являются потомками класса Container и наследуют от него ряд полезных методов:

add(Component component) — добавляет в контейнер элемент component ;

remove(Component component) — удаляет из контейнера элемент component ;

removeAll() — удаляет все элементы контейнера;

getComponentCount() — возвращает число элементов контейнера.

Кроме перечисленных в классе Container определено около двух десятков методов для управления набором компонентов, содержащихся в контейнере. Как видно, они похожи на методы класса-коллекции. Это неудивительно, ведь по сути контейнер и является коллекцией, но коллекцией особого рода — визуальной. Кроме хранения элементов контейнер занимается их пространственным расположением и прорисовкой. В частности, он имеет метод getComponentAt(int x, int y) , возвращающий компонент, в который попадает точка с заданными координатами (координаты отсчитываются от левого верхнего угла компонента) и ряд других. Мы не будем подробно рассматривать абстрактный контейнер, а сразу перейдем к его наиболее часто используемому потомку — классу JPanel .

Класс JPanel (панель)

Панель JPanel — это элемент управления, представляющий собой прямоугольное пространство, на котором можно размещать другие элементы. Элементы добавляются и удаляются методами, унаследованными от класса Container .

В примере с кнопкой мы наблюдали, как добавленная на панель содержимого кнопка заняла все ее пространство. Это происходит не всегда. На самом деле у каждой панели есть так называемый менеджер размещения , который определяет стратегию взаимного расположения элементов, добавляемых на панель. Его можно изменить методом setLayout(LayoutManager manager) . Но чтобы передать в этот метод нужный параметр, необходимо знать, какими бывают менеджеры.

Менеджер последовательного размещения FlowLayout

Самый простой менеджер размещения — FlowLayout . Он размещает добавляемые на панель компоненты строго по очереди, строка за строкой, в зависимости от размеров панели. Как только очередной элемент не помещается в текущей строке, он переносится на следующую. Лучше всего пронаблюдать это на примере. Изменим конструктор класса SimpleWindow следующим образом:

Менеджеры расположения описаны в пакете java.awt. Не забывайте импортировать нужные классы.

Пронаблюдайте за поведением окна, появляющегося после запуска программы. Четыре кнопки в нем расположены как слова в текстовом редакторе (при выравнивании по центру). Эффект будет лучше заметен, если изменять размеры окна во время работы программы.

Проанализируем текст примера. Новый менеджер расположения FlowLayout создается конструктором без параметров. Обратите внимание, в программе не используется промежуточная переменная. То есть вместо двух команд:

FlowLayout newLayout = new FlowLayout(); panel.setLayout(newLayout);

Мы используем одну:

Это вполне допустимо в тех случаях, когда в дальнейшем нам не потребуется обращаться к создаваемому объекту (что справедливо для данного примера). Мы создаем менеджер расположения, тут же привязываем его к панели — и все. Теперь панель и менеджер сами найдут друг с другом общий язык.

о взаимоотношениях панели и ее менеджера

Панель хранит ссылку на своего менеджера и сама обращается к нему каждый раз, когда нужно рассчитать координаты элементов (это происходит при их добавлении, удалении, изменении размеров, а также при изменении размеров окна). В принципе, мы можем даже получить этого менеджера методом getLayout() класса JPanel , но, как правило, в этом вообще нет необходимости.

Кстати, класс JPanel кроме конструктора без параметров, имеет конструктор, в котором в качестве параметра задается менеджер расположения. Поэтому вместо команд

JPanel panel = new JPanel(); panel.setLayout(new FlowLayout());

JPanel panel = new JPanel(new FlowLayout());

Более того, по умолчанию вновь создаваемая панель имеет именно менеджер расположения FlowLayout . Поэтому в приведенном выше примере мы устанаваем менеджера скорее для наглядности, вообще же, делать это не обязательно.

Точно также мы добавляем на панель новые кнопки. Мы нигде больше не пытаемся обратиться к этим кнопкам в программе, поэтому заводить под них переменные нет смысла.

Метод setContentPane(JPanel panel) позволяет заменить панель содержимого окна.

Менеджер граничного размещения BorderLayout

Менеджер размещения BorderLayout разделяет панель на пять областей: центральную, верхнюю, нижнюю, правую и левую. В каждую из этих областей можно добавить ровно по одному компоненту, причем компонент будет занимать всю отведенную для него область. Компоненты, добавленные в верхнюю и нижнюю области, будут растянуты по ширине, добавленные в правую и левую — по высоте, а компонент, добавленный в центр, будет растянут так, чтобы полностью заполнить оставшееся пространство панели.

При добавлении элемента на панель с менеджером размещения BorderLayout , необходимо дополнительно указывать в методе add() , какая из областей имеется в виду. Для этого служат строки с названиями сторон света: «North» , «South» , «East» , «West» и «Center» . Но вместо них рекомендуется использовать константы, определенные в классе BorderLayout: NORTH , SOUTH , EAST , WEST и CENTER (поскольку в строке можно допустить ошибку и не заметить этого, а при попытке написать неправильно имя константы компилятор выдаст предупреждение). Если же использовать метод add() как обычно, с одним параметром, элемент будет добавлен в центр.

Панель содержимого имеет именно такое расположение, именно поэтому кнопка и занимала все окно целиком (она была добавлена в центральную область). Чтобы пронаблюдать эффект BorderLayout , добавим кнопки во все пять областей:

Эффект будет хорошо наблюдаться, если изменять размеры окна.

Данное размещение не случайно используется в панели содержимого по умолчанию. Большинство программ пользуются областями по краям окна, чтобы расположить в них панели инструментов, строку состояния и т.п. А ограничение на один компонент в центральной области абсолютно не существенно, ведь этим компонентом может быть другая панель со множеством элементов и с любым менеджером расположения.

Менеджер табличного размещения GridLayout

GridLayout разбивает панель на ячейки одинаковой ширины и высоты (таким образом окно становится похожим на таблицу). Каждый элемент, добавляемый на панель с таким расположением, целиком занимает одну ячейку. Ячейки заполняются элементами по очереди, начиная с левой верхней.

Этот менеджер, в отличие от рассмотренных ранее, создается конструктором с параметрами (четыре целых числа). Необходимо указать количество столбцов, строк и расстояние между ячейками по горизонтали и по вертикали. Выполните следующий пример и пронаблюдайте эффект.

Менеджер блочного размещения BoxLayout и класс Box

Менеджер BoxLayout размещает элементы на панели в строку или в столбец.

Обычно для работы с этим менеджером используют вспомогательный класс Box , представляющий собой панель, для которой уже настроено блочное размещение. Создается такая панель не конструктором, а одним из двух статических методов, определенных в классе Box: createHorizontalBox() и createVerticalBox() .

Элементы, добавленные на панель с блочным размещением, выстраиваются один за другим. Расстояние между элементами по умолчанию нулевое. Однако вместо компонента можно добавить невидимую «распорку», единственная задача которой — раздвигать соседние элементы, обеспечивая между ними заданное расстояние. Горизонтальная распорка создается статическим методом createHorizontalStrut(int width) , а вертикальная — методом createVerticalStrut(int height) . Оба метода определены в классе Box , а целочисленный параметр в каждом из них определяет размер распорки.

Кроме того, на такую панель можно добавить еще один специальный элемент — своеобразную «пружину». Если размер панели будет больше, чем необходимо для оптимального размещения всех элементов, те из них, которые способны растягиваться, будут стараться заполнить дополнительное пространство собой. Если же разместить среди элементов одну или несколько «пружин», дополнительное свободное пространство будет распределяться и в эти промежутки между элементами. Горизонтальная и вертикальная пружины создаются соответственно методами createHorizontalGlue() и createVerticalGlue() .

Понять особенности работы этого менеджера лучше на наглядном примере. Мы расположим четыре кнопки вертикально, поставив между двумя центральными «пружину», а между остальными — распорки в 10 пикселов.

Особенности выравнивания элементов

В примере с вертикальной панелью все кнопки оказались выровнены по левому краю. Такое выравнивание по горизонтали принято по умолчанию.

Однако при разработке окна программы может понадобиться, чтобы какие-то элементы были выровнены иначе, например, по правому краю или по центру. Для того, чтобы установить выравнивание любого визуального компонента (например, кнопки или панели), используются методы setAlignmentX(float alignment) — выравнивание по горизонтали и setAlignmentY(float alignment) — выравнивание по вертикали. В качестве параметра проще всего использовать константы, определенные в классе JComponent . Для выравнивания по горизонтали служат константы LEFT_ALIGNMENT (по левому краю), RIGHT_ALIGNMENT (по правому краю) и CENTER_ALIGNMENT (по центру). Для выравнивания по вертикали — BOTTOM_ALIGNMENT (по нижнему краю), TOP_ALIGNMENT (по верхнему краю) и CENTER_ALIGNMENT (по центру).

Однако выравнивание работает несколько иначе, чем ожидается. Чтобы это обнаружить, изменим предыдущий пример, выровняв третью кнопку по правому краю. Для этого заменим строку:

JButton rightButton = new JButton(«-» ); rightButton.setAlignmentX(JComponent.RIGHT_ALIGNMENT); box.add(rightButton);

Нам пришлось ввести переменную для обращения к этой кнопке, поскольку теперь нам нужно выполнить с ней не одно, а два действия: установка выравнивания по правому краю и добавление в панель. Прежний прием — одновременное создание кнопки и передача ее в качестве параметра в метод — здесь не сработает.

После запуска программы мы увидим окно, в котором кнопки расположены не так, как, наверное, ожидалось. Мы привыкли, что выравнивание по правому краю прижимает объект к правому краю контейнера, но в данном случае перестроились все элементы, причем кнопка с выравниванием по правому краю оказалась самой левой.

Объяснение просто. При выравнивании по правому краю объект не прижимается к правому краю компонента. Вместо этого он прижимается правым краем к невидимой линии выравнивания. Все остальные компоненты прижимаются к этой линии своим левым краем, поэтому и получается наблюдаемый эффект.

Единственная трудность для начинающего разработчика может оказаться в том, что не всегда легко понять, где именно пройдет эта линия. Ее положение зависит от размеров и выравнивания всех элементов контейнера. Однако легко запомнить простое правило: если все элементы в контейнере выровнены одинаково, мы получим привычное поведение (как это и было в предыдущем примере, когда все компоненты были выровнены влево и линия в результате прижалась к левому краю панели.

о выравнивании элементов

Параметр выравнивания на самом деле представляет собой вещественное число в диапазоне от 0 до 1. Он показывает, какая часть компонента окажется слева от линии выравнивания, т.е. в каких пропорциях компонент будет «разрезан». Константы LEFT_ALIGNMENT и TOP_ALIGNMENT на самом деле равны 0, RIGHT_ALIGNMENT и BOTTOM_ALIGNMENT равны 1, а CENTER_ALIGHNMENT — 0.5. Можно подставлять эти числа напрямую (хотя использование констант значительно повышает наглядность!), а можно выбрать любое другое число от 0 до 1 и настроить совершенно произвольное выравнивание.

Попробуйте поэкспериментировать с вертикальной панелью, задавая различное выравнивание для ее элементов, чтобы интуитивно понять логику размещения линии выравнивания. Изменяйте размеры окна во время работы программы, чтобы увидеть как меняется положение этой линии.

Ручное размещение элементов

Если в качестве менеджера размещения панели установить null , элементы не будут расставляться автоматически. Координаты каждого элемента необходимо в этом случае указать явно, при этом они никак не зависят от размеров панели и от координат других элементов. По умолчанию координаты равны нулю (т.е. элемент расположен в левом верхнем углу панели). Размер элемента также необходимо задавать явно (в противном случае его ширина и высота будут равны нулю и элемент отображаться не будет).

Координаты элемента можно задать одним из следующих методов:

setLocation(int x, int y) ,

Эти методы работают аналогично, устанавливая левый верхний угол элемента в точку с заданными координатами. Разница в способе задания точки. Можно представить точку двумя целыми числами, а можно объектом класса Point . Класс Point по сути представляет собой ту же пару чисел, его конструктор имеет вид Point(int x, int y) . Получить доступ к отдельной координате можно методами getX() и getY() .

Можно задаться вопросом: зачем использовать класс Point , если можно просто передать пару чисел? Но дело в том, что многие полезные методы возвращают результат — координаты некоторой точки — в виде объекта этого класса. Например, метод getLocation() , возвращающий координаты элемента. Предположим, нам нужно поместить элемент b в точности в то место, которое занимает элемент a . Этого легко добиться одной строкой:

Размер элемента задается одним из двух методов:

setSize(int width, int height) ,

Эти методы работают одинаково — разница, как и в прошлый раз, в способе передачи параметра. Класс Dimension , аналогично классу Point , просто хранит два числа, имеет конструктор с двумя параметрами: Dimension(int width, int height) и позволяет получить доступ к своим составляющим — ширине и высоте — с помощью простых методов getWidth() и getHeigth() . Для того, чтобы получить текущий размер элемента, можно воспользоваться методом getSize() , возвращающего объект класса Dimension . Элемент b можно сделать точно такого же размера, как элемент a , выполнив команду:

Создадим панель, с которой не будет связано никакого менеджера размещения и вручную разместим на ней две кнопки:

Мы используем одну и ту же переменную button для обращения к обеим кнопкам (причем, второй раз ее описывать не нужно). В самом деле, осуществив все необходимые операции с первой кнопкой и зная, что обращаться к ней нам больше не понадобится, мы используем «освободившуюся» переменную для манипуляций со второй.

Автоматическое определение размеров компонентов

Если у панели есть любой менеджер размещения, она игнорирует явно заданные размеры и координаты всех своих элементов. В этом легко убедиться, заменив в предыдущем примере команду panel.setLayout(null ) на panel.setLayout(new FlowLayout()) . Менеджер размещения сам определяет координаты и размеры всех элементов.

Способ определения координат элементов очевидным образом вытекает из алгоритмов работы каждого менеджера и, таким образом, детально рассмотрен нами выше.

Мы также отмечали, что в некоторых случаях компоненты стараются заполнить все доступное им пространство. Например, всю центральную область в случае менеджера BorderLayout или всю ячейку в менеджере GridLayout . А в панели с менеджером FlowLayout , напротив, элементы никогда не пытаются выйти за определенные границы. Рассмотрим, что это за границы.

Каждый визуальный компонент имеет три типа размеров: минимально допустимый, максимально допустимый и предпочтительный. Узнать, чему равны эти размеры для данного компонента можно с помощью соответствующих методов:

Методы возвращают результат типа Dimension . Они запрограммированы в соответствующем классе. Например, у кнопки минимальный размер — нулевой, максимальный размер не ограничен, а предпочтительный зависит от надписи на кнопке (вычисляется как размер текста надписи плюс размеры полей).

Менеджер FlowLayout всегда устанавливает предпочтительные размеры элементов. Менеджер BorderLayout устанавливает предпочтительную ширину правого и левого, а также предпочтительную высоту верхнего и нижнего. Остальные размеры подгоняются под доступное пространство панели. Менеджер GridLayout пытается подогнать размеры всех элементов под размер ячеек. Менеджер BoxLayout ориентируется на предпочтительные размеры.

Когда элемент старается занять все доступное ему пространство, он «учитывает» пожелания не делаться меньше своих минимальных или больше максимальных.

Всеми тремя размерами можно управлять с помощью соответствующим методов set:

Чаще всего используется простой прием, когда элементу «не рекомендуется» увеличиваться или уменьшаться относительно своих предпочтительных размеров. Это легко сделать командой:

«Упаковка» окна

В рассмотренных выше примерах мы явно задавали размер окна методом setSize() . Но когда используется какой-либо менеджер расположения, расставляющий элементы и изменяющий их размеры по собственным правилам, трудно сказать заранее, какие размеры окна будут самыми подходящими.

Безусловно, наиболее подходящим будет вариант, при котором все элементы окна имеют предпочтительные размеры или близкие к ним* .

Если вместо явного указания размеров окна, вызвать метод pack() , они будут подобраны оптимальным образом с учетом предпочтений всех элементов, размещенных в этом окне.

Заметьте, что когда панель не имеет метода размещения, эта команда не работает (поскольку панель не имеет алгоритма для вычисления своего предпочтительного размера).

Упражнение

Как уже отмечалось, элементом панели может быть другая панель. Создайте панель с тремя кнопками и менеджером размещения FlowLayout и панель с двумя кнопками и менеджером размещения BoxLayout (горизонтальным). Разместите обе панели в главном окне (не изменяя менеджера размещения у панели содержимого): одну в центр, а другую вдоль любой стороны окна.

Рамки

Когда панели служат не просто для размещения элементов в соответствии с алгоритмом некоторого менеджера, а для визуального отделения их друг от друга, они оформляются с помощью рамок.

Рамка панели устанавливается методом setBorder(Border border) . Параметром метода выступает рамка — объект класса Border . Это абстрактный класс, поэтому для создания рамки используются его наследники:

EmptyBorder — пустая рамка, позволяет создать отступы вокруг панели. Размеры отступов задаются в конструкторе четырьмя целыми числами.

TitledBorder — рамка с заголовком. Простейший конструктор имеет один параметр типа String (текст заголовка). Заголовок может размещаться вдоль любой стороны рамки, иметь различные начертания.

EtchedBorder — рамка с тиснением. Может быть вогнутой или выпуклой.

BevelBorder — объемная рамка (выпуклая или вогнутая). Можно настроить цвета, требуемые для получения объемных эффектов.

SoftBevelBorder — то же самое, что BevelBorder, но позволяет дополнительно скруглить углы.

LineBorder — простая рамка, нарисованная сплошной линией. Можно выбирать цвет и толщину линии, скруглить углы.

MatteBorder — рамка из повторяющегося рисунка.

CompoundBorder — объединяет две рамки, передаваемые в качестве параметров конструктору в одну новую рамку.

Все перечисленные классы описаны в пакете javax.swing.border.

Рассмотрим пример. В этом примере мы создадим шесть панелей с различными рамками и разместим их в виде таблицы. Чтобы не описывать шесть раз процедуру создания новой панели, вынесем ее в отдельный метод:

Private JPanel createPanel(Border border, String text)

Метод createPanel() создает панель с кнопкой во весь свой размер. В качестве параметра передается надпись на кнопке и рамка, которую необходимо добавить к панели. Рамка добавляется не напрямую, а путем композиции с пустой рамкой. Этот прием часто используется, чтобы рамка не прилипала к краю панели.

Теперь шесть раз воспользуемся этим методом в конструкторе окна программы.

Этот пример показывает, с помощью каких конструкторов создаются различные рамки и как они выглядят. В нем использованы два новых класса: Color и ImageIcon .

Класс Color предназначен для работы с цветом. В нем есть несколько констант, описывающих наиболее распространенные цвета. В частности, к таковым относится Color.ORANGE .

Класс ImageIcon описывает графическое изображение. Параметр его конструктора — это путь к файлу, из которого изображение может быть загружено. В примере используется относительное имя файла «1.gif». Чтобы объект ImageIcon был успешно создан, файл с таким именем должен быть помещен в папку проекта.

Создание в NetBeans приложения Java с графическим интерфейсом. GUI в Java c помощью JFace: Создание окна приложения

Мы догадываемся, что порядком утомили вас, рассказывая все время о программах вывода текстовых сообщений на консоль. На этом занятии эта «унылая» череда примеров будет, наконец, прервана: мы покажем как на Java создаются окна и вы убедитесь, что это простая задача. Вот наш код (обсуждать его мы начнем на следующем занятии, т.к. в нем много-много особенностей, знать которые действительно нужно):

public class MoneyForNothing extends JFrame <

setTitle («Добро пожаловать в Money for Nothing»);


setSize (new Dimension (600, 400));

public static void main (String args) <

MoneyForNothing mfn = new MoneyForNothing ();

А вот этот же код в окне редактирования FAR-а:

Кстати, рекомендуем сразу набирать исходные коды программ в кодировке CP1251 (или в просторечии, в кодировке Windows): переключение кодировок осуществляется клавишей F8, а текущая кодировка высвечивается в строке состояния над областью редактирования.

Точка входа осталась без изменений, а вот остальной код порядком изменился (но не будем забегать вперед). После компиляции и запуска вы должны увидеть следующее:

Поздравляем – всего в несколько строк вы создали настоящее графическое окно! Его можно перетаскивать, изменять размеры, сворачивать, разворачивать и закрывать. Правда, окно у нас получилось какое-то блеклое, прямо сказать — «страшненькое». Кроме того, окно выводится в левом верхнем углу экрана, а хотелось бы в центре – там им удобнее пользоваться, да и выглядит такой вывод приятнее. Так что давайте займемся небольшой «полировкой».

Сначала решим вторую задачу – центровка окна. Тут мы рекомендуем остановиться и подумать – как бы вы это сделали?

Подскажем, что в графической библиотеке Java есть есть метод setLocation, которому в качестве параметров передаются координаты верхнего левого угла окна (именно от этого угла производится размещение других графических элементов внутри окна). Но если задать эти параметры «в лоб», то почти наверняка ничего путного не получится т.к. на другом мониторе с другим разрешением окно окажется совсем не там, где вы рассчитывали. Следовательно, координаты нужно задавать умнее.

Все, что нужно для размещения окна по центру, это знать размеры самого окна (они, кстати, заданы в конструкторе и составляют прямоугольник 600 на 400 пикселей) и разрешение экрана, а потом, путем нехитрой арифметики, вычислить необходимые координаты левого верхнего угла. Это достигается путем размещения следующего кода

Dimension sSize = Toolkit.getDefaultToolkit ().getScreenSize (),

if (fSize.height > sSize.height)

if (fSize.width > sSize.w >

setLocation ((sSize.width — fSize.width)/2,

непосредственно за строкой setSize (new Dimension (600, 400)); в конструкторе. Внесите необходимые изменения в исходный код, откомпилируйте программу и запустите на исполнение; окно должно появиться в центре экрана монитора.

Теперь несколько слов о внешнем виде окна. Его странный вид объясняется тем, что разработчики Java стремились добиться того, чтобы вне зависимости от аппаратной платформы и программной «начинки», все графические элементы (окна, кнопки, списки и проч.) имели единую отрисовку и единую цветовую гамму. Для этого они разработали специальный стиль, который назвали «METAL». Если разработчик не предпримет специальных усилий, то элементы графического интерфейса в его программах будут выглядеть именно в этом стиле, без учета особенностей конкретных компьютеров и их программного обеспечения. В отдельных случаях в этом есть смысл, но все-таки, согласитесь, что гораздо лучше, если программа, запущенная на Windows будет похожа на windows-программу, а запущенная на LINUX будет похожа на linux-программу. Добиться этого легко. Все, что нужно — включить в точку входа, перед созданием экземпляра класса следующий код:

catch (Exception lfe) <>

Так мы и поступим. Теперь, после компиляции обновленной версии нашей программы и запуска ее на исполнение, графическое окно будет выглядеть гораздо «пристойнее»:

В зависимости от настройки свойств экрана вашего монитора отображение окна будет отличаться; мы используем классическую тему Windows XP. У вас это же окно может выглядеть, например, так:

Убедитесь, что все работает как ожидалось: окно выводится в центре экрана и его внешний вид соответствует ожидаемому.

На этом мы закончим наше первое занятие, посвященное графическим интерфейсам. В нем мы показали «фасад», однако совершенно оставили «за бортом» множество вопросов, которые чрезвычайно важны и без которых невозможно программирование на Java вообще и графических интерфейсов в частности. Мы начнем заниматься этими вопросами на следующем занятии, а пока – поиграйтесь с тем исходным кодом, который есть.

В качестве упражнения, рассчитайте, к примеру, координаты вывода нашего окна в правом нижнем углу экрана и проверьте результат.

Другое упражнение проще по исполнению, но вам нужно будет воспользоваться документацией (надо же когда-то начинать, в самом деле): сделайте так, чтобы нельзя было изменять размеры окна, т.е. чтобы область системных кнопок выглядела так, как на рисунке

(подсказка: ищите информацию по ключевым словам javax и JFrame). Так что, засучите рукава и удачи!

Может случиться, что сформированное окно будет полностью или частично невидимо (из-за того, что вы неправильно рассчитали координаты его вывода на экран). Кнопки управления окна могут также оказаться недоступными. Как же прервать работу приложения не снимая задачу в «Диспетчере задач» или не перезагружая компьютер?

Поскольку мы запускаем программы на исполнение из FAR-а, то прерывание исполнения программы на Java достигается нажатием комбинации клавиш Control-C (здесь «C» — латинская буква, не путайте ее со сходной по начертанию буквой кириллической).

В Java есть 2 основных пакета для создания графических интерфейсов (Graphics User Interface). Это Abstract Windows Toolkit (AWT) и Swing. AWT использует виджеты операционной системы, поэтому эта библиотека немного быстрее. Но на мой взгляд, Swing более хорошо спроектирован.

В данном туториале мы рассмотрим основные элементы библиотеки Swing и создадим простой интерфейс (GUI) в качестве примера.

Для группировки компонент интерфейса используются контейнеры (Container). Для создания основного контейнера для приложения чаще всего используется контейнер JFrame (есть еще JWindows и JApplet). Проще всего унаследоваться от JFrame тем самым получить доступ ко множеству методов, например:

setBounds(x, y, w, h) — указывает координаты верхней левой вершины окна, а также его ширину и высоту.

setResizable(bool) — указывает, можно ли изменять размер окна.

setTitle(str) — устанавливает название окна.

setVisible(bool) — собственно отображает окно.

setDefaultCloseOperation(operation) — указывает операцию, которая будет произведена при закрытии окна.

Основные элементы управления:

  • JLabel — элемент для отображения фиксированного текста;
  • JTextField — простой edit-box;
  • JButton — обычная кнопка (button);
  • JCheckBox — элемент выбора (аналог checkbox);
  • JRadioButton — радио кнопка

Как видите, все довольно просто и логично.

При отображении элементов управления используются специальные менеджеры — LayoutManager. У всех LayoutManager»ов есть методы для добавления у удаления элементов.

FlowLayout — используется для последовательного отображения элементов. Если элемент не помещается в конкретную строку, он отображается в следующей.

GridLayout — отображения элементов в виде таблицы с одинаковыми размерами ячеек.

BorderLayout — используется при отображении не более 5 элементов. Эти элементы располагаются по краям фрейма и в ценрте: North, South, East, West, Center.

BoxLayout — отображает элементы в виде рядка или колонки.

GridBagLayout — позволяет назначать месторасположение и размер каждого виджета. Это самый сложный, но и самый эффективный вид отображения.

Стоит еще обратить внимание на обработку событий. Для этого используются так называемые Event Listeners.

Ну все, довольно теории, перейдем к примеру GUI:

Import java.awt.*; import java.awt.event.*; import javax.swing.*; public , JOptionPane.PLAIN_MESSAGE); > > public static vo >

getContentPane возвращает контейнер верхнего уровня. ButtonGroup служит для создания группы взаимосвязанных радио-кнопок.

Внутренний класс ButtonActionListener реализует интерфейс ActionListener. Для этого необходимо предоставить имплементацию метода actionPerformed.

JOptionPane служит для отображения диалоговых окон.

Жду ваших вопросов и комментариев. Если вы хотите больше узнать о Swing, скажите об этом, и в скором времени я напишу еще одну статью с более сложными приемами и компонентами.

Графический интерфейс в Java прошел весьма тернистый путь развития и становления. Долгое время его обвиняли в медленной работе, жадности к ресурсам системы и ограниченной функциональности.

Java AWT

Первой попыткой Sun создать графический интерфейс для Java была библиотека AWT (Abstract Window Toolkit) — инструментарий для работы с различными оконными средами. Sun сделал прослойку на Java, которая вызывает методы из библиотек, написанных на С. Библиотечные методы AWT создают и используют графические компоненты операционной среды. С одной стороны, это хорошо, так как программа на Java похожа на остальные программы в рамках одной ОС. Но при запуске ее на другой платформе могут возникнуть различия в размерах компонентов и шрифтов, которые будут портить внешний вид программы.

Чтобы обеспечить мультиплатформенность AWT интерфейсы вызовов компонентов были унифицированы, вследствии чего их функциональность получилась немного урезанной. Да и набор компонентов получился довольно небольшой. Так например, в AWT нет таблиц, а в кнопках не поддерживается отображение иконок. Тем не менее пакет java.awt входит в Java с самого первого выпуска и его можно использовать для создания графических интерфейсов.

Таким образом, компоненты AWT не выполняют никакой «работы». Это просто «Java-оболочка» для элементов управления той операционной системы, на которой они работают. Все запросы к этим компонентам перенаправляются к операционной системе, которая и выполняет всю работу.

Использованные ресурсы AWT старается освобождать автоматически. Это немного усложняет архитектуру и влияет на производительность. Написать что-то серьезное с использованием AWT будет несколько затруднительно. Сейчас ее используют разве что для апплетов.

Основные концепции SWING

Вслед за AWT Sun разработала графическую библиотеку компонентов Swing , полностью написанную на Java. Для отрисовки используется 2D, что принесло с собой сразу несколько преимуществ. Набор стандартных компонентов значительно превосходит AWT по разнообразию и функциональности. Swing позволяет легко создавать новые компоненты, наследуясь от существующих, и поддерживает различные стили и скины.

Создатели новой библиотеки пользовательского интерфейса Swing не стали «изобретать велосипед» и в качестве основы для своей библиотеки выбрали AWT. Конечно, речь не шла об использовании конкретных тяжеловесных компонентов AWT (представленных классами Button, Label и им подобными). Нужную степень гибкости и управляемости обеспечивали только легковесные компоненты. На диаграмме наследования представлена связь между AWT и Swing.

Важнейшим отличием Swing от AWT является то, что компоненты Swing вообще не связаны с операционной системой и поэтому гораздо более стабильны и быстры. Такие компоненты в Java называются легковесными (lightweight), и понимание основных принципов их работы во многом объяснит работу Swing.

Swing контейнеры высшего уровня

Для создания графического интерфейса приложения необходимо использовать специальные компоненты библиотеки Swing, называемые контейнерами высшего уровня (top level containers). Они представляют собой окна операционной системы, в которых размещаются компоненты пользовательского интерфейса. К контейнерам высшего уровня относятся окна JFrame и JWindow, диалоговое окно JDialog, а также апплет JApplet (который не является окном, но тоже предназначен для вывода интерфейса в браузере, запускающем этот апплет). Контейнеры высшего уровня Swing представляют собой тяжеловесные компоненты и являются исключением из общего правила. Все остальные компоненты Swing являются легковесными.

Простой Swing пример создания оконного интерфейса JFrame .

Import java.awt.Dimension; import javax.swing.JFrame; import javax.swing.JLabel; public ); frame.getContentPane().add(label); frame.setPreferredSize(new Dimension(200, 100)); frame.pack(); frame.setVisible(true); > public static void main(String args) < JFrame.setDefaultLookAndFeelDecorated(true); javax.swing.SwingUtilities.invokeLater(new Runnable() < public void run() < createGUI(); >>); > >

Конструктор JFrame() без параметров создает пустое окно. Конструктор JFrame(String title) создает пустое окно с заголовком title. Чтобы создать простейшую программу с пустым окном необходимо использовать следующие методы:

  • setSize(int width, int height) — определение размеров окна;
  • setDefaultCloseOperation(int operation) — определение действия при завершении программы;
  • setVisible(boolean visible) — сделать окно видимым.

Если не определить размеры окна, то оно будет иметь нулевую высоту независимо от того, что в нем находится. Размеры окна включают не только «рабочую» область, но и границы и строку заголовка.

Метод setDefaultCloseOperation определяет действие, которое необходимо выполнить при «выходе из программы». Для этого следует в качестве параметра operation передать константу EXIT_ON_CLOSE, описанную в классе JFrame.

По умолчанию окно создается невидимым. Чтобы отобразить окно на экране вызывается метод setVisible с параметром true. Если вызвать его с параметром false, окно станет невидимым.

Графический интерфейс java swing примера создания окна JFrame представлен на следующем рисунке.

Для подключения библиотеки Swing в приложении необходимо импортировать библиотеку javax.swing .

Каждый раз, как только создается контейнер высшего уровня, будь то обычное окно, диалоговое окно или апплет, в конструкторе этого контейнера создается корневая панель JRootPane . Контейнеры высшего уровня Swing следят за тем, чтобы другие компоненты не смогли «пробраться» за пределы JRootPane.

Корневая палель JRootPane добавляет в контейнеры свойство «глубины», обеспечивая возможность не только размещать компоненты один над другим, но и при необходимости менять их местами, увеличивать или уменьшать глубину расположения компонентов. Такая возможность необходима при создании многодокументного приложения Swing , у которого окна представляют легковесные компоненты, располагающиеся друг над другом, а также выпадающими (контекстными) меню и всплывающими подсказками.

На следующем рисунке наглядно представлена структура корневой панели JRootPane .

Корневая панель JRootPane представляет собой контейнер, унаследованный от базового класса Swing JComponent. В этом контейнере за расположение компонентов отвечает специальный менеджер расположения, реализованный во внутреннем классе RootPaneLayout. Этот менеджер расположения отвечает за то, чтобы все составные части корневой панели размещались так, как им следует: многослойная панель занимает все пространство окна; в ее слое FRAME_CONTENT_LAYER располагаются строка меню и панель содержимого, а над всем этим располагется прозрачная панель.

Все составляющие корневой панели JRootPane можно получить или изменить. Для этого у нее есть набор методов get/set. Программным способом JRootPane можно получить с использованием метода getRootPane().

Кроме контейнеров высшего уровня корневая панель применяется во внутренних окнах JInternalFrame, создаваемых в многодокументных приложениях и располагающихся на «рабочем столе» JDesktopPane. Это позволяет забыть про то, что данные окна представляют собой обычные легковесные компоненты, и работать с ними как с настоящими контейнерами высшего уровня.

Многослойная панель JLayeredPane

В основании корневой панели (контейнера) лежит так называемая многослойная панель JLayeredPane , занимающая все доступное пространство контейнера. Именно в этой панели располагаются все остальные части корневой панели, в том числе и все компоненты пользовательского интерфейса.

JLayeredPane используется для добавления в контейнер свойства глубины (depth). To есть, многослойная панель позволяет организовать в контейнере третье измерение, вдоль которого располагаются слои (layers) компонента. В обычном контейнере расположение компонента определяется прямоугольником, который показывает, какую часть контейнера занимает компонент. При добавлении компонента в многослойную панель необходимо указать не только прямоугольник, занимаемый компонентом, но и слой, в котором он будет располагаться. Слой в многослойной панели определяется целым числом. Чем больше определяющее слой число, тем выше слой находится.

Первый добавленный в контейнер компонент оказывается выше компонентов, добавленных позже. Чаще всего разработчик не имеет дело с позициями компонентов. При добавлении компонентов их положение меняются автоматически. Тем не менее многослойная панель позволяет менять позиции компонентов динамически, уже после их добавления в контейнер.

Возможности многослойной панели широко используются некоторыми компонентами Swing . Особенно они важны для многодокументных приложений, всплывающих подсказок и меню. Многодокументные Swing приложения задействуют специальный контейнер JDesktopPane («рабочий стол»), унаследованный от JLayeredPane , в котором располагаются внутренние окна Swing. Самые важные функции многодокументного приложения — расположение «активного» окна над другими, сворачивание окон, их перетаскивание — обеспечиваются механизмами многослойной панели. Основное преимущество от использования многослойной панели для всплывающих подсказок и меню — это ускорение их работы. Вместо создания для каждой подсказки или меню нового тяжеловесного окна, располагающегося над компонентом, в котором возник запрос на вывод подсказки или меню, Swing создает быстрый легковесный компонент. Этот компонент размещается в достаточно высоком слое многослойной панели выше в стопке всех остальных компонентов и используется для вывода подсказки или меню.

Многослойная панель позволяет организовать неограниченное количество слоев. Структура JLayeredPane включает несколько стандартных слоев, которые и используются всеми компонентами Swing, что позволяет обеспечить правильную работу всех механизмов многослойной панели. Стандартные слои JLayeredPane представлены на следующем рисунке.

Слой Default используется для размещения всех обычных компонентов, которые добавляются в контейнер. В этом слое располагаются внутренние окна многодокументных приложений.

Слой Palette предназначен для размещения окон с набором инструментов, которые обычно перекрывают остальные элементы интерфейса. Создавать такие окна позволяет панель JDesktopPane, которая размещает их в этом слое.

Слой Modal планировался для размещения легковесных модальных диалоговых окон. Однако такие диалоговые окна пока не реализованы, так что этот слой в Swing в настоящее время не используется.

Наиболее часто используемый слой, служащий для размещения всплывающих меню и подсказок.

Самый верхний слой. Предназначен для операций перетаскивания (drag and drop), которые должны быть хорошо видны в интерфейсе программы.

Небольшой пример JLayeredPane с многослойной панелью показывает, как добавлять компоненты в различные слои и как слои располагаются друг над другом:

Import javax.swing.*; import java.awt.*; // класс рисования двух типов фигур с текстом ); // определение местоположения фигур в окне figure1.setBounds(10, 40, 120, 120); figure2.setBounds(60, 120, 160, 180); figure3.setBounds(90, 55, 250, 180); // добавление фигур в различные слои lp.add(figure1, JLayeredPane.POPUP_LAYER); lp.add(figure2, JLayeredPane.PALETTE_LAYER); lp.add(figure3, JLayeredPane.PALETTE_LAYER); // смена позиции одной из фигур lp.setPosition(figure3, 0); // определение размера и открытие окна setSize(280, 250); setVisible(true); > public static void main(String args) < JFrame.setDefaultLookAndFeelDecorated(true); new JLayeredPaneTest(); >>

В примере создается небольшое окно JFrame и в многослойную панель добавляется несколько компонентов Figure. Чтобы получить многослойную панель в любом контейнере Swing высшего уровня, достаточно вызвать метод getLayeredPane() .

Вспомогательный класс Figure наследует свойства базового класса JComponent и позволяет различными цветами рисовать фигуры двух типов (круги и прямоугольники). Параметры для прорисовки фигур задаются в конструкторе класса.

При определении интерфейса создаются три фигуры разного цвета (два круга и прямоугольник). Круг размещается в слое POPUP_LAYER, а прямоугольники — в слое PALETTE_LAYER. При размещении компонентов указываются их абсолютные экранные координаты, потому что в многослойной панели обычные менеджеры расположения не работают.

В завершении позиция одного из прямоугольников меняется так, чтобы он был первым в слое, хотя изначально добавлялся вторым. Запустив приложение, вы увидите, что многослойная панель работает и аккуратно располагает компоненты согласно их слоям и позициям.

В обычных приложениях многослойная панель редко используется напрямую, в них она выполняет свои функции незаметно. Тем не менее, иногда она помогает создать удивительные эффекты и необычные интерфейсы, позволяя, например, разместить поверх обычных компонентов анимацию или видео, не требуя для этого от разработчика нечеловеческих усилий и ухищрений.

Панель содержимого ContentPane

Панель содержимого ContentPane — это следующая часть корневой панели, которая используется для размещения компонентов пользовательского интерфейса программы. ContentPane занимает большую часть пространства многослойной панели (за исключением места, занимаемого строкой меню). Чтобы панель содержимого не закрывала добавляемые впоследствии в окно компоненты, многослойная панель размещает ее в специальном очень низком слое с названием FRAME_CONTENT_LAYER, с номером -30000.

Обратиться к панели содержимого можно методом getContentPane() класса JFrame. С помощью метода add(Component component) можно добавить на нее любой элемент управления. Заменить ContentPane любой другой панелью типа JPanel можно методом setContentPane()

Пример добавления кнопки в панель содержимого:

JButton newButton = new JButton(); getContentPane().add(newButton);

В результате получим окно с кнопкой. Кнопка занимает всю доступную площадь окна. Такой эффект полезен не во всех программах, поэтому необходимо использовать различные способы расположения элементов на панели.

Панель содержимого можно полностью заменить. Рассмотрим следующий Swing пример использования панели содержимого ContentPane .

Import javax.swing.*; public )); // Замена панели содержимого setContentPane(contents); // Определение размера окна setSize(200, 100); // Открытие окна setVisible(true); > public static void main(String args) < JFrame.setDefaultLookAndFeelDecorated(true); new ContentPaneAdd(); >>

В примере создается небольшое окно и панель с двумя кнопками, которая затем методом setContentPane() заменяет панель содержимого окна. Таким образом была использована замена вместо более простого добавления — вызова метода add(). Интерфейс окна представлен на следующем скриншоте.

Панель содержимого ContentPane сама собой не представляет ничего особенного. Необходимо лишь помнить, что компоненты добавляются именно в нее.

Прозрачная панель JOptionPane

Прозрачная панель JOptionPane размещается корневой панелью выше всех элементов многослойной панели. За размещением JOptionPane следит корневая панель, которая размещает прозрачную панель выше многослойной панели, причем так, чтобы она полностью закрывала всю область окна, включая и область, занятую строкой меню.

JOptionPane используется в приложениях достаточно редко, поэтому по умолчанию корневая панель делает ее невидимой, что позволяет уменьшить нагрузку на систему рисования. Следует иметь в виду, что если вы делаете прозрачную панель видимой, нужно быть уверенным в том, что она прозрачна (ее свойство opaque равно false), поскольку в противном случае она закроет все остальные элементы корневой панели, и остальной интерфейс будет невидим.

В каких случаях можно использовать прозрачную панель JOptionPane ? С ее помощью можно определять функции приложения, для реализации которых «с нуля» понадобились бы серьезные усилия. Прозрачную панель можно приспособить под автоматизированное тестирование пользовательского интерфейса. Синтезируемые в ней события позволяют отслеживать промежуточные отладочные результаты. Иногда такой подход гораздо эффективнее ручного тестирования.

Прозрачная панель JOptionPane может быть использована для эффектной анимации, «плавающей» поверх всех компонентов, включая строку меню, или для перехвата событий, если некоторые из них необходимо обрабатывать перед отправкой в основную часть пользовательского интерфейса.

Пример использования прозрачной панели Swing JOptionPane:

// Использование прозрачной панели JOptionPane import java.awt.Dimension; import java.awt.Font; import java.awt.event.WindowEvent; import java.awt.event.WindowListener; import javax.swing.JDialog; import javax.swing.JFrame; import javax.swing.JLabel; import javax.swing.JOptionPane; import javax.swing.UIManager; public , FONT); JFrame.setDefaultLookAndFeelDecorated(true); JDialog.setDefaultLookAndFeelDecorated(true); createGUI(); > >); > >

Если методу setDefaultCloseOperation передать константу JFrame.EXIT_ON_CLOSE , то при закрытии окна приложение будет прекращать работу. В примере этому методу передается константа JFrame.DO_NOTHING_ON_CLOSE , чтобы при закрытии окна ничего не происходило. Выход из приложения в примере осуществляется из JFrame слушателя WindowListener в методе windowClosing . При закрытии окна вызывается метод windowClosing с параметром WindowEvent event, который в прозрачной панели Swing JOptionPane открывает диалоговое окно подтверждения.

На следующем скриншоте представлены два окна приложения. Верхнее главное окно. При закрытии данного окна открывается нижнее диалоговое окно подтверждения намерения.

Мастер Йода рекомендует:  Где найти рефералов для своей «реферальной» армии

Строка меню JMenuBar

Одной из важных особенностей использования корневой панели JRootPane в Swing, является необходимость размещения в окне строки меню JMenuBar . Серьезное приложение нельзя построить без какого-либо меню для получения доступа к функциям программы. Библиотека Swing предоставляет прекрасные возможности для создания удобных меню JMenuBar, которые также являются легковесными компонентами.


Строка меню JMenuBar размещается в многослойной панели в специальном слое FRAME_CONTENT_LAYER и занимает небольшое пространство в верхней части окна. По размерам в длину строка меню равна размеру окна. Ширина строки меню зависит от содержащихся в ней компонентов.

Корневая панель следит, чтобы панель содержимого и строка меню JMenuBar не перекрывались. Если строка меню не требуется, то корневая панель использует все пространство для размещения панели содержимого.

Примеры Swing

Исходные коды примеров, рассмотренных в тексте страницы, можно скачать .

Библиотека Swing

Современные программы нуждаются в графическом интерфейсе пользователя (GUI). Пользователи отвыкли работать через консоль: они управляют программой и вводят входные данные посредством так называемых элементов управления (в программировании их также называют визуальными компонентами), к которым относятся кнопки, текстовые поля, выпадающие списки и т.д.

Каждый из современных языков программирования предоставляет множество библиотек для работы со стандартным набором элементов управления. Напомним, что под библиотекой в программировании набор готовых классов и интерфейсов, предназначенных для решения определенного круга задач.

В Java есть три библиотеки визуальных компонентов для создания графического интерфейса пользователя. Самая ранняя из них называется AWT. Считается, что при ее проектировании был допущен ряд недочетов, вследствие которых с ней довольно сложно работать. Библиотека Swing разработана на базе AWT и заменяет большинство ее компонентов своими, спроектированными более тщательно и удобно. Третья, самая новая библиотека, называется SWT.

Каждая библиотека предоставляет набор классов для работы с кнопками, списками, окнами, меню и т.д., но эти классы спроектированы по-разному: они имеют различный набор методов с разными параметрами, поэтому «перевести» программу с одной библиотеки на другую (например, с целью увеличения быстродействия) не так-то просто. Это почти как перейти с одного языка программирования на другой: все языки умеют делать одно и то же, но у каждого из них свой синтаксис, своя программная структура и свои многочисленные хитрости.

По этой причине вместо того, чтобы делать обзор всех трех библиотек, мы постараемся получше разобраться в одной из них — библиотеке Swing. Полноценный графический интерфейс может быть разработан с ее помощью.

Окно JFrame

Каждая GUI-программа запускается в окне и по ходу работы может открывать несколько дополнительных окон.

В библиотеке Swing описан класс JFrame , представляющий собой окно с рамкой и строкой заголовка (с кнопками «Свернуть», «Во весь экран» и «Закрыть»). Оно может изменять размеры и перемещаться по экрану.

В Swing есть еще несколько классов окон. Например, JWindow — простейшее окно, без рамки и без строки заголовка. Обычно с его помощью делается заставка к программе, которая перед запуском должна выполнить несколько продолжительных действий (например, загрузить информацию из БД).

Конструктор JFrame() без параметров создает пустое окно. Конструктор JFrame(String title) создает пустое окно с заголовком title .

Чтобы написать простейшую программу, выводящую на экран пустое окно, нам потребуется еще три метода:

setSize(int width, int height) — устанавливает размеры окна. Если не задать размеры, окно будет иметь нулевую высоту независимо от того, что в нем находится и пользователю после запуска придется растягивать окно вручную. Размеры окна включают не только «рабочую» область, но и границы и строку заголовка.

setDefaultCloseOperation(int operation) — позволяет указать действие, которое необходимо выполнить, когда пользователь закрывает окно нажатием на крестик. Обычно в программе есть одно или несколько окон при закрытии которых программа прекращает работу. Для того, чтобы запрограммировать это поведение, следует в качестве параметра operation передать константу EXIT_ON_CLOSE , описанную в классе JFrame .

setVisible(boolean visible) — когда окно создается, оно по умолчанию невидимо. Чтобы отобразить окно на экране, вызывается данный метод с параметром true . Если вызвать его с параметром false , окно снова станет невидимым.

Теперь мы можем написать программу, которая создает окно, выводит его на экран и завершает работу после того, как пользователь закрывает окно.

import javax.swing.*; public ); myWindow.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); myWindow.setSize(400, 300); myWindow.setVisible(true ); > >

Обратите внимание, для работы с большинством классов библиотеки Swing понадобится импортировать пакет java.swing.*

Как правило, перед отображением окна, необходимо совершить гораздо больше действий, чем в этой простой программке. Необходимо создать множество элементов управления, настроить их внешний вид, разместить в нужных местах окна. Кроме того, в программе может быть много окон и настраивать их все в методе main() неудобно и неправильно, поскольку нарушает принцип инкапсуляции: держать вместе данные и команды, которые их обрабатывают. Логичнее было бы, чтобы каждое окно занималось своими размерами и содержимым самостоятельно. Поэтому классическая структура программы с окнами выглядит следующим образом:

В файле SimpleWindow.java:

В файле Program.java:

public >Из примера видно, что окно описывается в отдельном классе, являющемся наследником JFrame и настраивающее свой внешний вид и поведение в конструкторе (первой командой вызывается конструктор суперкласса). Метод main() содержится в другом классе, ответственном за управление ходом программы. Каждый из этих классов очень прост, каждый занимается своим делом, поэтому в них легко разбираться и легко сопровождать (т.е. совершенствовать при необходимости).

Обратите внимание, что метод setVisible() не вызывается в классе SimpleWindow , что вполне логично: за тем, где какая кнопка расположена и какие размеры оно должно иметь, следит само окно, а вот принимать решение о том, какое окно в какой момент выводится на экран — прерогатива управляющего класса программы.

Панель содержимого

Напрямую в окне элементы управления не размещаются. Для этого служит панель содержимого, занимающая все пространство окна* . Обратиться к этой панели можно методом getContentPane() класса JFrame . С помощью метода add(Component component) можно добавить на нее любой элемент управления.

В примерах этого занятия мы будем использовать только один элемент управления — кнопку (не вдаваясь в подробности ее устройства). Кнопка описывается классом JButton и создается конструктором с параметром типа String — надписью.

Добавим кнопку в панель содержимого нашего окна командами:

JButton newButton = new JButton(); getContentPane().add(newButton);

В результате получим окно с кнопкой. Кнопка занимает всю доступную площадь окна. Такой эффект полезен не во всех программах, поэтому необходимо изучить различные способы расположения элементов на панели.

Класс Container (контейнер)

Элементы, которые содержат другие элементы, называются контейнерами. Все они являются потомками класса Container и наследуют от него ряд полезных методов:

add(Component component) — добавляет в контейнер элемент component ;

remove(Component component) — удаляет из контейнера элемент component ;

removeAll() — удаляет все элементы контейнера;

getComponentCount() — возвращает число элементов контейнера.

Кроме перечисленных в классе Container определено около двух десятков методов для управления набором компонентов, содержащихся в контейнере. Как видно, они похожи на методы класса-коллекции. Это неудивительно, ведь по сути контейнер и является коллекцией, но коллекцией особого рода — визуальной. Кроме хранения элементов контейнер занимается их пространственным расположением и прорисовкой. В частности, он имеет метод getComponentAt(int x, int y) , возвращающий компонент, в который попадает точка с заданными координатами (координаты отсчитываются от левого верхнего угла компонента) и ряд других. Мы не будем подробно рассматривать абстрактный контейнер, а сразу перейдем к его наиболее часто используемому потомку — классу JPanel .

Класс JPanel (панель)

Панель JPanel — это элемент управления, представляющий собой прямоугольное пространство, на котором можно размещать другие элементы. Элементы добавляются и удаляются методами, унаследованными от класса Container .

В примере с кнопкой мы наблюдали, как добавленная на панель содержимого кнопка заняла все ее пространство. Это происходит не всегда. На самом деле у каждой панели есть так называемый менеджер размещения , который определяет стратегию взаимного расположения элементов, добавляемых на панель. Его можно изменить методом setLayout(LayoutManager manager) . Но чтобы передать в этот метод нужный параметр, необходимо знать, какими бывают менеджеры.

Менеджер последовательного размещения FlowLayout

Самый простой менеджер размещения — FlowLayout . Он размещает добавляемые на панель компоненты строго по очереди, строка за строкой, в зависимости от размеров панели. Как только очередной элемент не помещается в текущей строке, он переносится на следующую. Лучше всего пронаблюдать это на примере. Изменим конструктор класса SimpleWindow следующим образом:

Менеджеры расположения описаны в пакете java.awt. Не забывайте импортировать нужные классы.

Пронаблюдайте за поведением окна, появляющегося после запуска программы. Четыре кнопки в нем расположены как слова в текстовом редакторе (при выравнивании по центру). Эффект будет лучше заметен, если изменять размеры окна во время работы программы.

Проанализируем текст примера. Новый менеджер расположения FlowLayout создается конструктором без параметров. Обратите внимание, в программе не используется промежуточная переменная. То есть вместо двух команд:

FlowLayout newLayout = new FlowLayout(); panel.setLayout(newLayout);

Мы используем одну:

Это вполне допустимо в тех случаях, когда в дальнейшем нам не потребуется обращаться к создаваемому объекту (что справедливо для данного примера). Мы создаем менеджер расположения, тут же привязываем его к панели — и все. Теперь панель и менеджер сами найдут друг с другом общий язык.

о взаимоотношениях панели и ее менеджера

Панель хранит ссылку на своего менеджера и сама обращается к нему каждый раз, когда нужно рассчитать координаты элементов (это происходит при их добавлении, удалении, изменении размеров, а также при изменении размеров окна). В принципе, мы можем даже получить этого менеджера методом getLayout() класса JPanel , но, как правило, в этом вообще нет необходимости.

Кстати, класс JPanel кроме конструктора без параметров, имеет конструктор, в котором в качестве параметра задается менеджер расположения. Поэтому вместо команд

JPanel panel = new JPanel(); panel.setLayout(new FlowLayout());

JPanel panel = new JPanel(new FlowLayout());

Более того, по умолчанию вновь создаваемая панель имеет именно менеджер расположения FlowLayout . Поэтому в приведенном выше примере мы устанаваем менеджера скорее для наглядности, вообще же, делать это не обязательно.

Точно также мы добавляем на панель новые кнопки. Мы нигде больше не пытаемся обратиться к этим кнопкам в программе, поэтому заводить под них переменные нет смысла.

Метод setContentPane(JPanel panel) позволяет заменить панель содержимого окна.

Менеджер граничного размещения BorderLayout

Менеджер размещения BorderLayout разделяет панель на пять областей: центральную, верхнюю, нижнюю, правую и левую. В каждую из этих областей можно добавить ровно по одному компоненту, причем компонент будет занимать всю отведенную для него область. Компоненты, добавленные в верхнюю и нижнюю области, будут растянуты по ширине, добавленные в правую и левую — по высоте, а компонент, добавленный в центр, будет растянут так, чтобы полностью заполнить оставшееся пространство панели.

При добавлении элемента на панель с менеджером размещения BorderLayout , необходимо дополнительно указывать в методе add() , какая из областей имеется в виду. Для этого служат строки с названиями сторон света: «North» , «South» , «East» , «West» и «Center» . Но вместо них рекомендуется использовать константы, определенные в классе BorderLayout: NORTH , SOUTH , EAST , WEST и CENTER (поскольку в строке можно допустить ошибку и не заметить этого, а при попытке написать неправильно имя константы компилятор выдаст предупреждение). Если же использовать метод add() как обычно, с одним параметром, элемент будет добавлен в центр.

Панель содержимого имеет именно такое расположение, именно поэтому кнопка и занимала все окно целиком (она была добавлена в центральную область). Чтобы пронаблюдать эффект BorderLayout , добавим кнопки во все пять областей:

Эффект будет хорошо наблюдаться, если изменять размеры окна.

Данное размещение не случайно используется в панели содержимого по умолчанию. Большинство программ пользуются областями по краям окна, чтобы расположить в них панели инструментов, строку состояния и т.п. А ограничение на один компонент в центральной области абсолютно не существенно, ведь этим компонентом может быть другая панель со множеством элементов и с любым менеджером расположения.

Менеджер табличного размещения GridLayout

GridLayout разбивает панель на ячейки одинаковой ширины и высоты (таким образом окно становится похожим на таблицу). Каждый элемент, добавляемый на панель с таким расположением, целиком занимает одну ячейку. Ячейки заполняются элементами по очереди, начиная с левой верхней.

Этот менеджер, в отличие от рассмотренных ранее, создается конструктором с параметрами (четыре целых числа). Необходимо указать количество столбцов, строк и расстояние между ячейками по горизонтали и по вертикали. Выполните следующий пример и пронаблюдайте эффект.

Менеджер блочного размещения BoxLayout и класс Box

Менеджер BoxLayout размещает элементы на панели в строку или в столбец.

Обычно для работы с этим менеджером используют вспомогательный класс Box , представляющий собой панель, для которой уже настроено блочное размещение. Создается такая панель не конструктором, а одним из двух статических методов, определенных в классе Box: createHorizontalBox() и createVerticalBox() .

Элементы, добавленные на панель с блочным размещением, выстраиваются один за другим. Расстояние между элементами по умолчанию нулевое. Однако вместо компонента можно добавить невидимую «распорку», единственная задача которой — раздвигать соседние элементы, обеспечивая между ними заданное расстояние. Горизонтальная распорка создается статическим методом createHorizontalStrut(int width) , а вертикальная — методом createVerticalStrut(int height) . Оба метода определены в классе Box , а целочисленный параметр в каждом из них определяет размер распорки.

Кроме того, на такую панель можно добавить еще один специальный элемент — своеобразную «пружину». Если размер панели будет больше, чем необходимо для оптимального размещения всех элементов, те из них, которые способны растягиваться, будут стараться заполнить дополнительное пространство собой. Если же разместить среди элементов одну или несколько «пружин», дополнительное свободное пространство будет распределяться и в эти промежутки между элементами. Горизонтальная и вертикальная пружины создаются соответственно методами createHorizontalGlue() и createVerticalGlue() .

Понять особенности работы этого менеджера лучше на наглядном примере. Мы расположим четыре кнопки вертикально, поставив между двумя центральными «пружину», а между остальными — распорки в 10 пикселов.

Особенности выравнивания элементов

В примере с вертикальной панелью все кнопки оказались выровнены по левому краю. Такое выравнивание по горизонтали принято по умолчанию.

Однако при разработке окна программы может понадобиться, чтобы какие-то элементы были выровнены иначе, например, по правому краю или по центру. Для того, чтобы установить выравнивание любого визуального компонента (например, кнопки или панели), используются методы setAlignmentX(float alignment) — выравнивание по горизонтали и setAlignmentY(float alignment) — выравнивание по вертикали. В качестве параметра проще всего использовать константы, определенные в классе JComponent . Для выравнивания по горизонтали служат константы LEFT_ALIGNMENT (по левому краю), RIGHT_ALIGNMENT (по правому краю) и CENTER_ALIGNMENT (по центру). Для выравнивания по вертикали — BOTTOM_ALIGNMENT (по нижнему краю), TOP_ALIGNMENT (по верхнему краю) и CENTER_ALIGNMENT (по центру).

Однако выравнивание работает несколько иначе, чем ожидается. Чтобы это обнаружить, изменим предыдущий пример, выровняв третью кнопку по правому краю. Для этого заменим строку:

JButton rightButton = new JButton(«-» ); rightButton.setAlignmentX(JComponent.RIGHT_ALIGNMENT); box.add(rightButton);

Нам пришлось ввести переменную для обращения к этой кнопке, поскольку теперь нам нужно выполнить с ней не одно, а два действия: установка выравнивания по правому краю и добавление в панель. Прежний прием — одновременное создание кнопки и передача ее в качестве параметра в метод — здесь не сработает.

После запуска программы мы увидим окно, в котором кнопки расположены не так, как, наверное, ожидалось. Мы привыкли, что выравнивание по правому краю прижимает объект к правому краю контейнера, но в данном случае перестроились все элементы, причем кнопка с выравниванием по правому краю оказалась самой левой.

Объяснение просто. При выравнивании по правому краю объект не прижимается к правому краю компонента. Вместо этого он прижимается правым краем к невидимой линии выравнивания. Все остальные компоненты прижимаются к этой линии своим левым краем, поэтому и получается наблюдаемый эффект.

Единственная трудность для начинающего разработчика может оказаться в том, что не всегда легко понять, где именно пройдет эта линия. Ее положение зависит от размеров и выравнивания всех элементов контейнера. Однако легко запомнить простое правило: если все элементы в контейнере выровнены одинаково, мы получим привычное поведение (как это и было в предыдущем примере, когда все компоненты были выровнены влево и линия в результате прижалась к левому краю панели.

о выравнивании элементов

Параметр выравнивания на самом деле представляет собой вещественное число в диапазоне от 0 до 1. Он показывает, какая часть компонента окажется слева от линии выравнивания, т.е. в каких пропорциях компонент будет «разрезан». Константы LEFT_ALIGNMENT и TOP_ALIGNMENT на самом деле равны 0, RIGHT_ALIGNMENT и BOTTOM_ALIGNMENT равны 1, а CENTER_ALIGHNMENT — 0.5. Можно подставлять эти числа напрямую (хотя использование констант значительно повышает наглядность!), а можно выбрать любое другое число от 0 до 1 и настроить совершенно произвольное выравнивание.

Попробуйте поэкспериментировать с вертикальной панелью, задавая различное выравнивание для ее элементов, чтобы интуитивно понять логику размещения линии выравнивания. Изменяйте размеры окна во время работы программы, чтобы увидеть как меняется положение этой линии.

Ручное размещение элементов

Если в качестве менеджера размещения панели установить null , элементы не будут расставляться автоматически. Координаты каждого элемента необходимо в этом случае указать явно, при этом они никак не зависят от размеров панели и от координат других элементов. По умолчанию координаты равны нулю (т.е. элемент расположен в левом верхнем углу панели). Размер элемента также необходимо задавать явно (в противном случае его ширина и высота будут равны нулю и элемент отображаться не будет).

Координаты элемента можно задать одним из следующих методов:

setLocation(int x, int y) ,

Эти методы работают аналогично, устанавливая левый верхний угол элемента в точку с заданными координатами. Разница в способе задания точки. Можно представить точку двумя целыми числами, а можно объектом класса Point . Класс Point по сути представляет собой ту же пару чисел, его конструктор имеет вид Point(int x, int y) . Получить доступ к отдельной координате можно методами getX() и getY() .

Можно задаться вопросом: зачем использовать класс Point , если можно просто передать пару чисел? Но дело в том, что многие полезные методы возвращают результат — координаты некоторой точки — в виде объекта этого класса. Например, метод getLocation() , возвращающий координаты элемента. Предположим, нам нужно поместить элемент b в точности в то место, которое занимает элемент a . Этого легко добиться одной строкой:

Размер элемента задается одним из двух методов:

setSize(int width, int height) ,

Эти методы работают одинаково — разница, как и в прошлый раз, в способе передачи параметра. Класс Dimension , аналогично классу Point , просто хранит два числа, имеет конструктор с двумя параметрами: Dimension(int width, int height) и позволяет получить доступ к своим составляющим — ширине и высоте — с помощью простых методов getWidth() и getHeigth() . Для того, чтобы получить текущий размер элемента, можно воспользоваться методом getSize() , возвращающего объект класса Dimension . Элемент b можно сделать точно такого же размера, как элемент a , выполнив команду:

Создадим панель, с которой не будет связано никакого менеджера размещения и вручную разместим на ней две кнопки:

Мы используем одну и ту же переменную button для обращения к обеим кнопкам (причем, второй раз ее описывать не нужно). В самом деле, осуществив все необходимые операции с первой кнопкой и зная, что обращаться к ней нам больше не понадобится, мы используем «освободившуюся» переменную для манипуляций со второй.

Автоматическое определение размеров компонентов

Если у панели есть любой менеджер размещения, она игнорирует явно заданные размеры и координаты всех своих элементов. В этом легко убедиться, заменив в предыдущем примере команду panel.setLayout(null ) на panel.setLayout(new FlowLayout()) . Менеджер размещения сам определяет координаты и размеры всех элементов.

Способ определения координат элементов очевидным образом вытекает из алгоритмов работы каждого менеджера и, таким образом, детально рассмотрен нами выше.

Мы также отмечали, что в некоторых случаях компоненты стараются заполнить все доступное им пространство. Например, всю центральную область в случае менеджера BorderLayout или всю ячейку в менеджере GridLayout . А в панели с менеджером FlowLayout , напротив, элементы никогда не пытаются выйти за определенные границы. Рассмотрим, что это за границы.

Каждый визуальный компонент имеет три типа размеров: минимально допустимый, максимально допустимый и предпочтительный. Узнать, чему равны эти размеры для данного компонента можно с помощью соответствующих методов:

Методы возвращают результат типа Dimension . Они запрограммированы в соответствующем классе. Например, у кнопки минимальный размер — нулевой, максимальный размер не ограничен, а предпочтительный зависит от надписи на кнопке (вычисляется как размер текста надписи плюс размеры полей).

Менеджер FlowLayout всегда устанавливает предпочтительные размеры элементов. Менеджер BorderLayout устанавливает предпочтительную ширину правого и левого, а также предпочтительную высоту верхнего и нижнего. Остальные размеры подгоняются под доступное пространство панели. Менеджер GridLayout пытается подогнать размеры всех элементов под размер ячеек. Менеджер BoxLayout ориентируется на предпочтительные размеры.

Когда элемент старается занять все доступное ему пространство, он «учитывает» пожелания не делаться меньше своих минимальных или больше максимальных.

Всеми тремя размерами можно управлять с помощью соответствующим методов set:

Чаще всего используется простой прием, когда элементу «не рекомендуется» увеличиваться или уменьшаться относительно своих предпочтительных размеров. Это легко сделать командой:

«Упаковка» окна

В рассмотренных выше примерах мы явно задавали размер окна методом setSize() . Но когда используется какой-либо менеджер расположения, расставляющий элементы и изменяющий их размеры по собственным правилам, трудно сказать заранее, какие размеры окна будут самыми подходящими.

Безусловно, наиболее подходящим будет вариант, при котором все элементы окна имеют предпочтительные размеры или близкие к ним* .

Если вместо явного указания размеров окна, вызвать метод pack() , они будут подобраны оптимальным образом с учетом предпочтений всех элементов, размещенных в этом окне.

Заметьте, что когда панель не имеет метода размещения, эта команда не работает (поскольку панель не имеет алгоритма для вычисления своего предпочтительного размера).

Упражнение

Как уже отмечалось, элементом панели может быть другая панель. Создайте панель с тремя кнопками и менеджером размещения FlowLayout и панель с двумя кнопками и менеджером размещения BoxLayout (горизонтальным). Разместите обе панели в главном окне (не изменяя менеджера размещения у панели содержимого): одну в центр, а другую вдоль любой стороны окна.

Рамки

Когда панели служат не просто для размещения элементов в соответствии с алгоритмом некоторого менеджера, а для визуального отделения их друг от друга, они оформляются с помощью рамок.

Рамка панели устанавливается методом setBorder(Border border) . Параметром метода выступает рамка — объект класса Border . Это абстрактный класс, поэтому для создания рамки используются его наследники:

EmptyBorder — пустая рамка, позволяет создать отступы вокруг панели. Размеры отступов задаются в конструкторе четырьмя целыми числами.


TitledBorder — рамка с заголовком. Простейший конструктор имеет один параметр типа String (текст заголовка). Заголовок может размещаться вдоль любой стороны рамки, иметь различные начертания.

EtchedBorder — рамка с тиснением. Может быть вогнутой или выпуклой.

BevelBorder — объемная рамка (выпуклая или вогнутая). Можно настроить цвета, требуемые для получения объемных эффектов.

SoftBevelBorder — то же самое, что BevelBorder, но позволяет дополнительно скруглить углы.

LineBorder — простая рамка, нарисованная сплошной линией. Можно выбирать цвет и толщину линии, скруглить углы.

MatteBorder — рамка из повторяющегося рисунка.

CompoundBorder — объединяет две рамки, передаваемые в качестве параметров конструктору в одну новую рамку.

Все перечисленные классы описаны в пакете javax.swing.border.

Рассмотрим пример. В этом примере мы создадим шесть панелей с различными рамками и разместим их в виде таблицы. Чтобы не описывать шесть раз процедуру создания новой панели, вынесем ее в отдельный метод:

Private JPanel createPanel(Border border, String text)

Метод createPanel() создает панель с кнопкой во весь свой размер. В качестве параметра передается надпись на кнопке и рамка, которую необходимо добавить к панели. Рамка добавляется не напрямую, а путем композиции с пустой рамкой. Этот прием часто используется, чтобы рамка не прилипала к краю панели.

Теперь шесть раз воспользуемся этим методом в конструкторе окна программы.

Этот пример показывает, с помощью каких конструкторов создаются различные рамки и как они выглядят. В нем использованы два новых класса: Color и ImageIcon .

Класс Color предназначен для работы с цветом. В нем есть несколько констант, описывающих наиболее распространенные цвета. В частности, к таковым относится Color.ORANGE .

Класс ImageIcon описывает графическое изображение. Параметр его конструктора — это путь к файлу, из которого изображение может быть загружено. В примере используется относительное имя файла «1.gif». Чтобы объект ImageIcon был успешно создан, файл с таким именем должен быть помещен в папку проекта.

Одно из важных достоинств Java состоит в том, что это не только язык, но и стандартизованная объектно-ориентированная среда выполнения. Любопытно проследить, как в рамках Java решаются традиционные программистские проблемы. Мы остановимся на оконном графическом интерфейсе.

Вместе с различными приятными (главным образом для пользователя) свойствами, оконный интерфейс привносит и довольно неприятные (для разработчика) проблемы. Одна из них — это переносимость приложений между разными платформами. Переносимость является проблемой и без графического интерфейса, однако наличие такового делает ее многократно сложнее.

Дело в том, что каждая оконная среда — это сложный мир, со своими законами, набором строительных блоков и приемов программирования. Motif не похож на MS-Windows и оконную систему Macintosh. По-разному представляются примитивные элементы интерфейса, по-разному обрабатываются внешние события, по-разному происжодит рисование на экране и т.д.

Вместе с тем, по своей сути оконная среда — просто идеальное поле деятельности для объектного программирования. Даже человеку, неискушенному в объектно-ориентированных методах проектирования, ясно, что такие вещи, как кнопки, текстовые поля, меню, вполне заслуживают названия объектов, как бы это слово ни понималось. Иначе говоря, вполне понятно, что такое “кнопка вообще”, “список вообще” и т.д.

Все это дает основания надеяться, что с помощью объектно-ориентированного подхода можно получить по-настоящему высокоуровневую и переносимую оконную среду, основанную на абстрактных типах данных.

Данная особенность оконных сред проявилась, в частности, в появлении довольно большого количества различных классовых библиотек, “обертывающих” оригинальные оконные системы. В качестве примеров можно привести MFC, OWL, Zink и многие другие.

Вот и среди стандартных Java-библиотек присутствует AWT или Abstract Windowing Toolkit — абстрактный оконный инструментарий.

AWT является системой классов для поддержки программирования в оконной среде. Его “абстрактность” проявляется в том, что все, зависящее от конкретной платформы, хорошо локализовано и спрятано. В AWT реализованы такие простые и понятные вещи, как кнопки, меню, поля ввода; простые и понятные средства организации интерфейса — контейнеры, панели, менеджеры геометрии.

Основы построения графического пользовательского интерфейса Компоненты и контейнеры

Если посмотреть на любое оконное приложение, то легко увидеть, что интерфейсная часть состоит из объектов, объединенных в группы. В AWT объекты называются компонентами (на самом деле они все являются наследниками класса Component), а группы объектов реализованы с помощью так называемых контейнеров. Отметим, что любой контейнер — это тоже компонента, поэтому группы объектов могут быть вложены друг в друга. Как обычно, меню стоят особняком.

К числу примитивных компонент относятся:

Взаимодействие интерфейсных компонент с пользователем реализовано с помощью аппарата событий, о котором будет рассказано ниже.

Java/Первое окно

  1. Python
    1. tkinterСтандратный модуль для создания приложений с GUI интерфейсом.
  2. VBA
    1. VBAGUI в среде MS Excel.
  3. HTML
    1. HTML bookОбзор GUI в HTML.
  4. Pascal
    1. Windows FormsИнтерфейс (API) для создания GUI-приложений.

Так как в большинстве своем сегодняшние начинающие программисты не любят окно командной строки — приведу пример оконного приложения.

Содержание

Начнем с простого [ править ]

Вот у нас и получилось ничего не делающее приложение!

Делаем что-то полезное [ править ]

Это конечно замечательно уметь показывать пустое окно, но мы хотим, чтобы оно приносило пользу! Создадим форму для подсчета ворон на заборе. Для этого будем отображать текущее количество ворон и с помощью двух кнопок добавлять или вычитать по одной.

Дизайн [ править ]

Это то, что мы примерно хотим увидеть:

Вороносчет
Ворон на заборе : 666
Ворона прилетела Ворона улетела

Скелет программы [ править ]

После компиляции и запуска — получится что-то такое:

Добавляем функциональность [ править ]

Пришло время добавить немного интерактивности. Нам нужно сделать 3 вещи:

  1. Научить кнопку addCrow добавлять 1 к переменной voron.
  2. Научить кнопку removeCrow вычитать 1 из переменной voron.
  3. Научить countLabel — обновлять свое значение в зависимости от содержимого переменной voron.

Записки программиста

Краткий обзор GUI-фреймворков для Java и мое первое простенькое GUI-приложение на Swing

Так исторически сложилось, что с UI мне приходилось работать очень мало. Видимо, поэтому мне так интересные всякие там Qt и wxW >

Ситуация с GUI фреймворками в мире Java несколько запутанная. Насколько я смог разобраться, дела обстоят следующим образом.

  • AWT (Abstract Window Toolkit) был первым GUI фреймворком. Идея была правильная — AWT использует нативные контролы, то есть, они выглядят и физически являются родными, независимо от того, где вы запускаете свое приложение. К сожалению, оказалось, что (1) общих для различных окружений контролов мало и (2) писать кроссплатформенные нативные интерфейсы так, чтобы ничего не поползло и не разъехалось, очень сложно;
  • Поэтому на смену AWT пришел Swing. Swing использует формочки, создаваемые AWT, на которых он своими силами рисует контролы. Работает это хозяйство, понятно дело, медленнее, но зато UI становится намного более портабельным. Swing предлагает на выбор программисту множество Look&Feel, благодаря которым можно сделать либо так, чтобы приложение выглядело и вело себя одинаково как под Windows, так и под Linux, либо чтобы приложение было очень похоже на нативное независимо от того, где его запускают. В первом случае приложение проще отлаживать, во втором — становятся счастливее пользователи. Кстати, изначально Swing был сделан парнями из Netscape;
  • SWT (Standard W >всех-всех-всех платформ, и тогда приложение вроде как даже станет портабельным, но только до тех пор, пока не появится какая-нибудь новая операционная система или архитектура процессора;
  • JavaFX активно пилится в Oracle и позиционируется, как скорая замена Swing. Идеологически JavaFX похож на Swing, то есть, контролы не нативные. Среди интересных особенностей JavaFX следует отметить хардверное ускорение, создание GUI при помощи CSS и XML (FXML), возможность использовать контролы JavaFX’а в Swing’е, а также кучу новых красивых контролов, в том числе для рисования диаграмм и 3D. Видео с более детальным обзором JavaFX можно посмотреть здесь. Начиная с Java 7, JavaFX является частью JRE/JDK;
  • NetBeans Platform (не путать с NetBeans IDE!) — это такая штука, которая, как я понял, работает поверх Swing и JavaFX, предоставляет как бы более удобный интерфейс для работы с ними, а также всякие дополнительные контролы. В одном приложении, использующем NetBeans Platform, я видел возможность перетаскивать вкладки drug&drop’ом, располагая панели в окне подобно тому, как это делают тайловые оконные менеджеры. По всей видимости, сам Swing так не умеет. Почитать про NetBeans Platform поподробнее можно здесь;

Не исключено, что есть и другие фреймворки. Наиболее каноничным на сегодняшний день является Swing, поэтому им и займемся.

Выше что-то говорилось про какие-то там Look&Feel. Чтобы лучше понять, о чем идет речь, давайте напишем программу, которая выводит список этих самых Look&Feel и позволит переключаться между ними прямо в процессе работы программы.

Наше приложение будет выглядеть следующим образом под Ubuntu:

А так оно будет выглядеть при запуске под Windows:

Как видите, JRE под Windows и Linux включают в себя разный набор L&F. Кроме того, вы можете подключить сторонний Look&Feel или даже написать свой. По умолчанию используется L&F Metal, который во всех ОС и оконных менеджерах выглядит более-менее одинаково. Если вам больше нравятся круглые кнопочки, то вместо Metal можно использовать Look&Feel Nimbus. Если вам хочется, чтобы приложение было похоже на нативное, то под Linux следует выбрать L&F GTK+ (интересно, а если пользователь сидит под KDE?), а под Windows — L&F Windows. Неплохой идеей, видимо, будет предусмотреть в вашей программе возможность переключаться между различными L&F. С другой стороны, при этом придется тестировать работу приложения со всеми этими L&F.

Давайте посмотрим на исходный код приложения. Коллеги UI-щики заверили меня, что никаких WYSIWYG редакторов они не используют, а если используют, то разве что для быстрого прототипирования. Из неплохих WYSIWYG редакторов назывался JFormDesigner. Говорят, генерируемый им код даже похож на код, написанный человеком, а не адовую().последовательность().вызовов().методов(). В общем, весь код писался лапками в IntelliJ IDEA.

В Swing и AWT, если мы хотим что-то поменять в UI, мы должны делать это из event dispatching thread. Статический метод invokeLater принимает класс, реализующий интерфейс Runnable, и вызывает его метод run() внутри event dispatching thread. Если вам не знаком приведенный выше синтаксис, то это такой способ в Java объявить класс, не присваивая ему имени. Классы без имени называются анонимными. Часто анонимные классы в Java выполняют ту же роль, что играют лямда-фукнции в функциональных языках программирования. Помимо прочего, поддерживаются и замыкания. Интересно, что, в отличие от лямбд, анонимные классы в Java позволяют передать сразу пачку методов. Притом, при помощи наследования и абстрактных классов, для всех или части методов можно взять их реализацию по умолчанию.

Аннотация @Override проверяет, что метод run() действительно переопределит метод интерфейса Runnable. Без нее при переопределении метода мы можем случайно сделать опечатку и определить новый метод вместо того, чтобы переопределить существующий. Впрочем, в данном конкретном случае аннотация, видимо, не очень полезна, и, наверное, даже является лишней.

В итоге event dispatching thread вызовет метод createGUI(), полный код которого следующий:

private static void createGUI ( ) <
JList String > list = new JList <> ( ) ;
list. setSelectionMode ( ListSelectionModel . SINGLE_SELECTION ) ;

JScrollPane listScrollPane = new JScrollPane ( list ) ;

JPanel topPanel = new JPanel ( ) ;
topPanel. setLayout ( new BorderLayout ( ) ) ;
topPanel. add ( listScrollPane, BorderLayout . CENTER ) ;

ActionListener updateButtonListener = new UpdateListAction ( list ) ;
updateButtonListener. actionPerformed (
new ActionEvent ( list, ActionEvent . ACTION_PERFORMED , null )
) ;

JButton updateListButton = new JButton ( «Update list» ) ;
JButton updateLookAndFeelButton = new JButton ( «Update Look&Feel» ) ;

JPanel btnPannel = new JPanel ( ) ;
btnPannel. setLayout ( new BoxLayout ( btnPannel, BoxLayout . LINE_AXIS ) ) ;
btnPannel. add ( updateListButton ) ;
btnPannel. add ( Box . createHorizontalStrut ( 5 ) ) ;
btnPannel. add ( updateLookAndFeelButton ) ;

JPanel bottomPanel = new JPanel ( ) ;
bottomPanel. add ( btnPannel ) ;

JPanel panel = new JPanel ( ) ;
panel. setBorder ( BorderFactory . createEmptyBorder ( 5 , 5 , 5 , 5 ) ) ;
panel. setLayout ( new BorderLayout ( ) ) ;
panel. add ( topPanel, BorderLayout . CENTER ) ;
panel. add ( bottomPanel, BorderLayout . SOUTH ) ;

JFrame frame = new JFrame ( «Look&Feel Switcher» ) ;
frame. setMinimumSize ( new Dimension ( 300 , 200 ) ) ;
frame. setDefaultCloseOperation ( WindowConstants . EXIT_ON_CLOSE ) ;
frame. add ( panel ) ;
frame. pack ( ) ;
frame. setVisible ( true ) ;

updateListButton. addActionListener ( updateButtonListener ) ;
updateLookAndFeelButton. addActionListener (
new UpdateLookAndFeelAction ( frame, list )
) ;
>

Тут, в общем-то, нет ничего супер сложного. Создаются кнопки, список, список заворачивается в JScrollPane, чтобы у списка была прокрутка. Элементы управления располагаются во фрейме при помощи панелей. Панели могут иметь различные лайоуты, здесь мы использовали BorderLayout и BoxLayout. Принцип аналогичен тому, что используется в wxWidgets.

Для реакции на различные события, например, нажатия кнопок, используются классы, реализующие интерфейс ActionListener. В приведенном выше коде используется два таких класса — UpdateListAction и UpdateLookAndFeelAction. Как нетрудно догадаться по названию, первый класс отвечает за обработку нажатий на левую кнопку «Update list», второй — на правую кнопку «Update Look&Feel». ActionListener’ы привязываются к кнопкам при помощи метода addActionListener. Поскольку сразу после запуска приложения нам хочется увидеть список доступных Look&Feel, мы эмулируем нажатие на кнопку «Update list». Для этого мы создаем экземпляр класса ActionEvent и передаем его в качестве аргумента методу actionPerformed класса UpdateListAction.

Реализация класса UpdateListAction следующая:

static class UpdateListAction implements ActionListener <
private JList String > list ;

public UpdateListAction ( JList String > list ) <
this . list = list ;
>

@Override
public void actionPerformed ( ActionEvent event ) <
ArrayList String > lookAndFeelList = new ArrayList <> ( ) ;
UIManager. LookAndFeelInfo [ ] infoArray =
UIManager . getInstalledLookAndFeels ( ) ;
int lookAndFeelIndex = 0 ;
int currentLookAndFeelIndex = 0 ;
String currentLookAndFeel >=
UIManager . getLookAndFeel ( ) . getClass ( ) . getName ( ) ;

for ( UIManager. LookAndFeelInfo info : infoArray ) <
if ( info. getClassName ( ) . equals ( currentLookAndFeel >) ) <
currentLookAndFeelIndex = lookAndFeelIndex ;
>
lookAndFeelList. add ( info. getName ( ) ) ;
lookAndFeelIndex ++;
>

String [ ] listDataArray = new String [ lookAndFeelList. size ( ) ] ;
final String [ ] newListData =
lookAndFeelList. toArray ( listDataArray ) ;
final int newSelectedIndex = currentLookAndFeelIndex ;

SwingUtilities . invokeLater ( new Runnable ( ) <
@Override
public void run ( ) <
list. setListData ( newListData ) ;
list. setSelectedIndex ( newSelectedIndex ) ;
>
> ) ;
>
>

В конструкторе передается указатель на список, в котором мы будет отображать доступные Look&Feel. На самом деле, поскольку UpdateListAction является вложенным классом нашего основного класса LookAndFeelSwitcher, у него есть возможность обращаться напрямую к полям создавшего его экземпляра LookAndFeelSwitcher. Но функциональщик внутри меня сопротивляется такому подходу, поэтому я решил передать ссылку на список явно через конструктор.

Метод actionPerformed будет вызываться при нажатии на кнопку. Код этого метода довольно тривиален — мы просто используем статические методы класса UIManager для получения списка доступных Look&Feel, а также определения текущего Look&Feel. Затем обновляется содержимое списка и выбранный в нем элемент. Тут нужно обратить внимание на два момента. Во-первых, каждый Look&Feel имеет имя и имя класса, это разные вещи. Пользователю мы должны показывать имена, а при переключении Look&Feel использовать имя класса. Во-вторых, обратите внимание на то, как создаются final переменные newListData и newSelectedIndex, которые затем используются в анонимном классе. Это и есть тот самый аналог замыканий, речь о котором шла ранее. Очевидно, использование не final переменных в замыканиях привело бы к печальным последствиям.

Наконец, рассмотрим класс UpdateLookAndFeelAction:

static class UpdateLookAndFeelAction implements ActionListener <
private JList String > list ;
private JFrame rootFrame ;

public UpdateLookAndFeelAction ( JFrame frame, JList String > list ) <
this . rootFrame = frame ;
this . list = list ;
>

@Override
public void actionPerformed ( ActionEvent e ) <
String lookAndFeelName = list. getSelectedValue ( ) ;
UIManager. LookAndFeelInfo [ ] infoArray =
UIManager . getInstalledLookAndFeels ( ) ;

for ( UIManager. LookAndFeelInfo info : infoArray ) <
if ( info. getName ( ) . equals ( lookAndFeelName ) ) <
String message = «Look&feel was changed to » + lookAndFeelName ;
try <
UIManager . setLookAndFeel ( info. getClassName ( ) ) ;
SwingUtilities . updateComponentTreeUI ( rootFrame ) ;
> catch ( ClassNotFoundException e1 ) <
message = «Error: » + info. getClassName ( ) + » not found» ;
> catch ( InstantiationException e1 ) <
message = «Error: instantiation exception» ;
> catch ( IllegalAccessException e1 ) <
message = «Error: illegal access» ;
> catch ( UnsupportedLookAndFeelException e1 ) <
message = «Error: unsupported look and feel» ;
>
JOptionPane . showMessageDialog ( null , message ) ;
break ;
>
>
>
>

Здесь мы просто (1) находим L&F с именем, равным имени, выбранному в списке, (2) меняем L&F при помощи static метода setLookAndFeel класса UIManager и (3) перерисовываем главный фрейм нашего UI, а также, рекурсивно, расположенные на нем элементы, при помощи static метода updateComponentTreeUI класса SwingUtilities. Наконец, мы уведомляем пользователя при помощи сообщения, все ли прошло успешно.

Также хотелось бы сказать пару слов об отладке GUI-приложений на Java, и не только GUI. Во-первых, в Swing есть такое волшебное сочетание клавиш Ctr + Shift + F1, которое выводит в stdout информацию о том, как расположены контролы. Очень полезно, если хочется слизать UI у конкурентов. Во-вторых, есть такой интересный хоткей Ctr + \. Если нажать его в консоли работающего приложения на Java, будут выведены все нитки и их стектрейсы. Удобно, если вы словили дэдлок. Наконец, в-третьих, во время разработки GUI бывает полезно разукрасить панели в разные цвета. Сделать это можно так:

Код к этой заметке вы найдете здесь. Присмотритесь к нему повнимательнее. Как по мне, код получился не таким уж и многословным или там в стиле «фабрика фабрик для создания фабрик», как любят наговаривать на Java некоторые товарищи. В принципе, все довольно просто и понятно, и выкинуть из кода особо нечего. Вы как считаете?

Использование JFrame для создания окна приложения

Каждое десктопное приложение должно иметь окно. В этом окне будут располагаться все необходимые компоненты графического интерфейса пользователя, посредством которых пользователь будет работать с приложением. Попробуем создать окно нашего приложения и разместить там что-нибудь. Пока что наше приложение будет простым и незамысловатым. Для создания окна приложения в Swing используется класс JFrame. Он содержит ряд методов и свойств, которые позволяют настроить его должным образом. Рассмотрим пример.

import javax.swing.JFrame;
import javax.swing.JLabel;

public class TestFrame <

public static void createGUI() <
JFrame.setDefaultLookAndFeelDecorated(true);
JFrame frame = new JFrame(«Test frame»);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JLabel label = new JLabel(«Test label»);
frame.getContentPane().add(label);

frame.setPreferredSize(new Dimension(200, 100));

public static void main(String[] args) <
javax.swing.SwingUtilities.invokeLater(new Runnable() <
public void run() <
createGUI();
>
>);
>
>

Это самое простое Swing приложение. Данный код создаст приложение, внешний вид которого представлен на рисунке. Рассмотрим код более детально. Каждое приложение должно содержать статический метод main – точка входа приложения, именно с него начинается выполнение.

Далее выполняется создание графического интерфейса пользователя. Создание графического интерфейса пользователя непременно должно происходить в Event dispatch потоке. Для этого метод вызывается внутри определенного вида конструкции SwingUtilities. Перейдем к непосредственному созданию и размещению компонентов.

Самой первой строкой метода createGUI мы говорим системе, чтобы окно полностью рисовалось Swing. Если закомментировать этот код, то окно будет определяться самой операционной системой – Swing доверит рисовать окно ей. Далее создаем само окно и указываем текст, который будет располагаться в его заголовке. С помощью метода setDefaultCloseOperation мы говорим системе, как отреагировать на закрытие окна. Сейчас нам необходимо, чтобы при закрытии окна закрывалось и приложение. Для этого мы передаем параметр JFrame.EXIT_ON_CLOSE. Но когда-нибудь необходимо будет не закрывать приложение, а закрыть только окно и оставить выполняться его в фоновом режиме, тогда мы будем передавать этому методу другой параметр.

Далее создаем текстовый лейбл с помощью JLabel, указывая при этом какой текст мы хотим в нем видеть, и размещаем на форме. При размещении компонента в окне тоже есть одна хитрость. У объекта JFrame есть специальная панель content pane, на которой должны размещаться все остальные дочерние компоненты. С помощью вызова getContentPane мы получаем эту панель и добавляем лейбл уже на нее. Далее устанавливаем размер окна и показываем его пользователю.

Иногда история создания интернета интересна к прочтению. Можно много узнать о том, как создавали интернет.

Java Eclipse пример оконного приложения — создание окна, задание размеров, добавление надписей и кнопок, вывод сообщения

Primary tabs

Forums:

Далее пример урока 8 по программированию на Java.

Это пример содержит 5 классов (в проекте вам надо будет создать пять классов), предварительно создав два пакета пакета.

пакет TestForm

Этот пакет содержит два класса.

класс FormStart (создаёт «рамку», задаёт её размеры и запрашивает холст):

класс MainFormAppearance ( в одном своём методе задаёт внешность холста и возвращает ссылку на холст):

В этом пакете будут расположены 3 класса-действия (действий), которые мы будем «прикреплять» к создаваемым кнопкам (см. класс выше MainFormAppearance)

Класс CsvListener:

класс ParceListener:


Класс TestActionListener:

Добавить комментарий