3 самых важных сферы применения Python возможности языка


Оглавление (нажмите, чтобы открыть):

Особенности и преимущества языка программирования Python

Одним из наиболее популярных языков программирования сегодня является Python, использование которого делает возможным выполнение различных задач. Язык Питон является оптимальным инструментом для написания макросов и активно применяется для осуществления требующих быстрой разработки проектов. Язык включает множество пакетов и модулей, обеспечивающих его универсальность. Применение Python позволяет программистам экономить время. Для того чтобы освоить язык программирования или поднять уровень владения им, достаточно пройти курс по Python, подать заявку на который можно на сайте.

Особенности курсов по Python

От традиционных машинных Питон отличает целый ряд характеристик. К числу его особенностей можно отнести:

  • Полностью автоматическое управление памятью. Данная функция позволяет программистам избежать волнений по поводу необходимости распределять или освобождать память.
  • Выполнение операций осуществляется в более высоком уровне абстракций отчасти по причине архитектуры языка, отчасти благодаря расширенной библиотеке кодов, поставляемой вместе с Питон.
  • Массив может включать объекты различных типов.
  • Значение любого типа может быть назначено переменной.
  • Язык легко объединяется с написанными на С и С++ модулями, что позволяет существенно увеличить скорость программ. Благодаря этим особенностям развертка приложений может выполняться очень быстро.

Основным недостатком Python является не полная контролируемость языка, поскольку происходит частичная трансляция к внутренней форме кода байта, выполненного интерпретатором Питон.

Применение языка Python на практике

В настоящее время Питон активно используется огромным количеством программистов в разных странах мира, причем число их постоянно увеличивается. Одной из причин популярности языка является то, что он с одинаковой эффективностью работает на OS/2, Macintosh, UNIX, Windows. Универсальность языка обеспечивает развертку больших программ и разработку малых приложений.
Условно сфера применения языка программирования Питон можно разделить на несколько категорий:

  • Системное программирование: отыскивание каталогов и файлов, запуск других программ.
  • Графический интерфейс: разработка приложений с веб-интерфейсом и пр.
  • Веб-сценарии. Поставляемый со стандартными модулями интерпретатор Питон обеспечивает возможность выполнения разнообразных сетевых операций в режиме сервера или в режиме клиента: обработка файлов XML, передача файлов по протоколу FTP, извлечение информации, передача, прием, создание и разбор сообщений электронной почты, загрузка веб-страниц с URL-адресов.
  • Быстрое создание прототипов.
  • Программирование научных вычислений.
  • Создание игр, роботов и т.д.

Курс по Python: преимущества

Оптимальным вариантом получения в короткие сроки знаний и практических навыков программирования является видео курс Python.
Преимуществами обучения на видео-курсах можно назвать:

  • возможность совмещать обучение с работой или отдыхом;
  • возможность обучаться по индивидуальному графику;
  • возможность сэкономить на обучении;
  • возможность получения как базовых навыков, так и повышения уровня программирования.

Если вы приняли решение освоить этот язык, вам стоит предельно серьезно отнестись к выбору курсов. В последнее время все более широкое распространение получает дистанционное обучение с помощью видео. Оно обладает массой неоспоримых преимуществ, которые вы можете оценить на собственном опыте. Главное, чтобы преподаватель обладал хорошими знаниями и большим опытом.

26 полезных приёмов и хитростей Python

Python — один из самых популярных и востребованных языков программирования. На это есть несколько причин:

  • Его легко изучить.
  • Он очень универсальный.
  • У него есть множество модулей и библиотек.

В процессе работы с Python каждый находит для себя какие-то полезные модули и приёмы. В этой подборке вы узнаете о некоторых полезных хитростях.

all и any

Одна из многих причин популярности Python — его читабельность и выразительность.

Часто шутят, что Python — это «исполняемый псевдокод». Однако когда вы можете писать код таким образом, становится сложно не согласиться:

bashplotlib

Хотите строить графики в консоли?

$ pip install bashplotlib

Стройте на здоровье.

collections

В Python есть классные встроенные типы данных, но порой они ведут себя не совсем так, как хотелось бы.

К счастью, во встроенной библиотеке Python есть модуль collections с удобными дополнительными типами данных:

Когда-нибудь задумывались о том, как заглянуть внутрь объекта в Python и посмотреть на его атрибуты? Конечно, задумывались.

18 ноября – 20 декабря, Москва, 43 990 ₽

Используем командную строку:

Это может пригодиться при интерактивной сессии в Python, а также для динамического изучения объектов и модулей, с которыми вы работаете.

emoji

$ pip install emoji

И не делайте вид, что не хотите попробовать:

from __future__ import

Одним из последствий популярности Python является то, что постоянно разрабатываются и выходят новые версии. Новые версии — новые возможности, но только не для вас, если вы пользуетесь устаревшей.

Впрочем, не всё так плохо. Модуль __future__ даёт возможность импортировать функциональность будущих версий Python. Это прямо как путешествие во времени, или магия:

geopy

Программистам может быть сложно ориентироваться в географии. Однако модуль geopy всё упрощает:

$ pip install geopy

Он работает путём абстрагирования API разных сервисов геокодирования. Этот модуль даёт возможность узнать полный адрес места, его долготу и широту и даже высоту.

Также в нём есть полезный класс Distance . Он высчитывает расстояние между двумя местами в удобной единице измерения.

howdoi

Зависли над какой-то проблемой и не можете вспомнить её решение? Нужно зайти на StackOverflow, но не хочется покидать терминал?

Тогда вам не обойтись без этого инструмента командной строки:

$ pip install howdoi

Задайте любой вопрос, и он постарается найти ответ на него:

Но будьте осторожны: он извлекает код из топовых ответов на StackOverflow и не всегда даёт полезную информацию:

$ howdoi exit vim

inspect

Модуль inspect пригодится для понимания того, что происходит за кулисами в Python. Вы даже можете вызывать его методы на них самих!

Ниже используется метод inspect.getsource() для вывода его собственного исходного кода. Также используется метод inspect.getmodule() для вывода модуля, в котором его определили.

Последняя команда выводит номер строки, на которой она сама находится:

Конечно, кроме таких банальных применений этот модуль может оказаться полезным для понимания того, что делает ваш код. Также вы можете использовать его, чтобы писать самодокументированный код.

Библиотека Jedi предназначена для автодополнения и анализа кода. Она ускоряет процесс написания кода и делает его более продуктивным.

Если вы не разрабатываете свою IDE, то вам, наверное, будет более интересно использовать Jedi в качестве расширения редактора. К счастью, уже есть много вариантов.

Возможно, вы уже встречались с Jedi — IPython использует эту библиотеку для автодополнения.

**kwargs

Когда изучаешь любой язык, на пути встречается множество краеугольных камней. В случае с Python понимание таинственного синтаксиса **kwargs можно считать одним из них.

Две звёздочки впереди объекта словаря дают возможность передавать в функцию содержимое этого словаря как именованные аргументы.

Ключи словаря — это имена аргументов, а значения передаются в функцию. Вам даже не обязательно называть его kwargs :

Это полезно в тех случаях, когда ваши функции должны обрабатывать именованные аргументы, не определённые заранее.

Прим.перев. Также это может пригодиться при написании функций-обёрток, которые передают все аргументы другой функции.

Генераторы списков

Ещё одна классная особенность Python, дающая возможность быстро создавать списки. Такие выражения позволяют легко писать чистый код, который читается почти как естественный язык:

У Python есть хорошая встроенная поддержка функционального программирования. Одной из самых полезных возможностей является функция map() , особенно в сочетании с лямбда-функциями:

Здесь map() применяет простую лямбда-функцию на каждом элементе x и возвращает объект map , который можно преобразовать в какой-нибудь итерируемый объект вроде списка или кортежа.

newspaper3k

Если вы ещё с ним не встречались, то приготовьтесь к тому, что модуль newspaper снесёт вам крышу.

Он даёт возможность извлекать статьи и связанные мета-данные из множества разных источников. Можно извлечь изображения, текст и имена авторов.

В нём даже есть встроенная NLP-функциональность.

Поэтому, если вы собирались использовать BeautifulSoup или другую библиотеку для вебскрапинга в своём следующем проекте, лучше сэкономьте своё время и силы и установите newspaper:

$ pip install newspaper3k

Перегрузка операторов

В Python есть поддержка перегрузки операторов — одной из тех штук, о которых говорят все настоящие computer-scientis’ы.

На самом деле идея проста. Когда-нибудь задумывались, почему Python позволяет использовать оператор + как для сложения чисел, так и для конкатенации строк? За этим как раз и стоит перегрузка операторов.

Вы можете определять объекты, которые используют стандартные символы операторов любым образом. Это позволяет применять их в контексте объектов, с которыми вы работаете:

pprint

Стандартная функция Python print() делает своё дело. Но если попытаться вывести какой-нибудь большой вложенный объект, результат будет выглядеть не очень приятно.

Здесь на помощь приходит модуль из стандартной библиотеки pprint (pretty print). С его помощью можно выводить объекты со сложной структурой в читабельном виде.

Мастхэв для любого Python-разработчика, работающего с нестандартными структурами данных:

Queue

Python поддерживает многопоточность, в использовании которой помогает стандартный модуль Queue.

Он позволяет реализовывать такую структуру данных, как очередь. Очереди позволяют добавлять и извлекать элементы согласно определённому правилу.

Очереди «первым пришёл — первым ушёл» («first in, first out», FIFO) позволяют извлекать объекты в порядке их добавления. Из очередей «последним пришёл — первым ушёл» («last in, first out», LIFO) можно извлекать последние добавленные объекты.

Наконец, приоритетные очереди позволяют извлекать объекты согласно порядку их сортировки.

Здесь можно посмотреть на пример использования очередей в многопоточном программировании на Python.

__repr__

При определении класса или объекта полезно добавлять «официальный» способ представления объекта строкой. Например:

Это сильно упрощает отладку. Вот всё, что вам нужно сделать:

Прим.перев. Метод __repr__() позволяет определять строковое представление, предназначенное для программиста и удобное при использовании во время отладки, а метод __str__() позволяет определять понятное пользователю строковое представление, которое можно отображать в интерфейсе программы.

Python — отличный скриптовый язык. Но иногда стандартные библиотеки os и subprocess вызывают только головную боль.

Библиотека sh может стать приятной альтернативой.

Она позволяет вызывать любую программу как обычную функцию, что полезно для автоматизации различных задач исключительно с помощью Python:

Прим.перев. Библиотека sh поддерживает только платформы Linux и macOS; для работы на Windows вам придётся поискать другой инструмент.

Аннотации типов

Python — динамически типизированный язык. Вам не нужно указывать тип данных при определении переменных, функций, классов и т.д.

Это позволяет ускорить процесс разработки. Однако мало что раздражает так сильно, как ошибка времени выполнения, возникшая из-за простого несовпадения типа.

С версии Python 3.5 при определении функции можно добавлять аннотации типов:

Можно даже определять псевдонимы типов:

Хотя их использование опционально, с помощью аннотаций типов код можно сделать более понятным.

Также они позволяют использовать инструменты для проверки типов, чтобы отлавливать ошибки TypeError.

Стандартный модуль uuid — быстрый и простой способ сгенерировать UUID (universally unique identifier, глобально уникальный идентификатор).

Так мы создаём случайное 128-битное число, которое почти наверняка будет уникальным.

Существует более 2¹²² возможных UUID. Это более 5 ундециллионов или 5,000,000,000,000,000,000,000,000,000,000,000,000.

Вероятность нахождения дубликатов в заданном наборе крайне мала. Даже при наличии триллиона UUID вероятность того, что среди них есть дубликат, гораздо меньше, чем один к миллиарду.

Вполне недурно для двух строк кода.

Виртуальные среды

Часто Python-программисты работают над несколькими проектами одновременно. К сожалению, порой два проекта зависят от разных версий одной зависимости. Какую же установить?

К счастью, в Python есть поддержка виртуальных сред, которые позволяют взять лучшее от двух миров. В командной строке нужно ввести:

Теперь вы можете иметь разные независимые версии Python на одной машине.

wikipedia

У Wikipedia есть классное API, которое позволяет получить доступ к непревзойдённому источнику полностью бесплатной информации.

Модуль wikipedia делает доступ к этому API чуть ли чрезмерно удобным:

Как и настоящий сайт, модуль предоставляет поддержку многих языков, разрешение многозначности страниц, получение случайной страницы и даже метод donate() .

Юмор — ключевая особенность Python. В конце концов, язык был назван в честь британского комедийного шоу «Летающий цирк Монти Пайтона». Во многих местах официальной документации можно найти отсылки к самым известным эпизодам шоу.

Конечно, чувство юмора не заканчивается на документации. Попробуйте ввести следующую строку:

Оставайся собой, Python. Оставайся собой.

YAML означает «YAML — не язык разметки» («YAML Ain’t Markup Language»). Это язык форматирования данных, являющийся надмножеством JSON.

В отличие от JSON, YAML может хранить более сложные объекты и ссылаться на собственные элементы. Также там можно писать комментарии, что делает YAML подходящим для конфигурационных файлов.

Модуль PyYAML позволяет использовать YAML в Python. Установить можно так:

$ pip install pyyaml

А затем импортировать:


PyYAML позволяет хранить любые Python-объекты и экземпляры любых пользовательских классов.

Напоследок ещё одна клёвая штука. Когда-нибудь возникала необходимость создать словарь из двух списков?

Встроенная функция zip() принимает несколько итерируемых объектов и возвращает последовательность кортежей. Каждый кортеж группирует элементы объектов по их индексу.

Можно провести операцию, обратную zip() , с помощью zip(*) .

А какие приёмы или полезные библиотеки знаете вы? Делитесь в комментариях.

Программирование на Python: особенности обучения, перспективы, ситуация на рынке труда

Python входит в число самых популярных языков программирования. В этой статье посмотрим на этот язык глазами новичка. Узнаем об особенностях обучения, сферах применения, перспективах Python. Поговорим о работе и зарплатах программистов. Также узнаем у известных экспертов, стоит ли выбирать «питон» в качестве первого языка программирования.

Почему Python — хороший вариант для начинающих: краткая теория

Python — высокоуровневый язык программирования общего назначения. Относится к интерпретируемым языкам. То есть написанный на Python код интерпретируется в момент обращения программой-интерпретатором без предварительной компиляции.

Справка: в русском языке распространены названия «питон» и «пайтон». В качестве эмблемы используется стилизованное изображение змеи, хотя язык назван не в честь рептилии, а в честь британских комедиантов Monty Python. Поэтому правильно говорить и писать «пайтон» — это наша позиция.

Создатель Python — нидерландский инженер Гвидо ван Россум. В конце 80-х этот специалист работал в Centrum Wiskunde & Informatica — Национальном исследовательском институте математики и информатики, расположенном в Амстердаме. Здесь Гвидо ван Россум разрабатывал язык ABC, предназначенный для обучения программированию.

Язык программирования «пайтон» — сайд-проект ван Россума. Гвидо считал существующие языки сложными для понимания и изучения, поэтому начал работать над собственным проектом. Ван Россум планировал сделать одновременно простой и мощный язык. Специалист представил Python в 1991 году.

«Пайтон» — мультипарадигмальный язык программирование. Он поддерживает объектно-ориентированный и структурный подходы, функциональное и аспектно-ориентированное программирование. В Python используется динамическая типизация. То есть тип переменной определяется в момент присваивания значения. При изменении значения может меняться тип данных.

«Пайтон» поддерживает функциональное программирование в традициях языков семейства Lisp. Вот некоторые возможности:

  • Функции высших порядков filter , map и reduce .
  • Генераторы списков (list comprehensions).
  • Генераторные выражения.
  • Множества.

Синтаксис Python простой и понятный для людей. В этом языке для выделения блоков кода применяются отступы, а не скобки. Пример кода ниже.

Философия Python поощряет простоту, эстетичность кода и отношение к работе, которое проще всего выразить английским словом fun — забава, шутка. Это частично описано в знаменитом сборнике афоризмов Zen of Python (Дзен «пайтона»).

Где используют Python: веб-разработка, AI, Big Data

Как отмечалось выше, Python — язык общего назначения. Тем не менее в нескольких сферах Python применяется чаще и успешнее всего.

Веб-разработка на Python

В веб-разработке «пайтон» применяется для серверного программирования. Питонисты работают с бэкендом веб-приложений, используя нативный Python или популярные фреймворки, например, Django, Pyramid или Flask. «Пайтон» одинаково удобно использовать как для создания прототипов или небольших приложений, так и для больших и масштабируем проектов, например, порталов, веб-сервисов, интернет-магазинов.

Machine Learning и AI на Python

Python — один из основных языков программирования, которые применяют в области машинного обучения и искусственного интеллекта (Machine Learning и Artificial Intelligence). Например, библиотека с открытым исходным кодом TensorFlow, созданная исследовательской командой Google Brain, написана с использованием Python. Google использует эту библиотеку для программирования и обучения нейронных сетей, которые используются для изучения искусственного интеллекта.

Ещё одна известная библиотека — scikit-learn. Она написана на Python с включениями Cython — статически типизированного компилируемого подмножества Python. Библиотека scikit-learn применяется в исследованиях искусственного интеллекта, для обучения инженеров machine learning, для управления промышленными системами.

Использование Python для работы с Big Data

В Python есть несколько мощных и популярных библиотек, которые предназначены для работы с большими данными: анализа, визуализации, прогнозирования тенденций. Например, библиотека с открытым исходным кодом SciPy включает модули для математических, инженерных и научных вычислений. Matplotlib — одна из самых популярных библиотек для визуализации данных. Библиотека PANDAS применяется для анализа информации.

Это не все области применения Python. Этот язык используют для создания десктопных приложений, разработки игр и 3D-графики, программ для обработки аудио, видео и изображений и так далее.

Рейтинг и перспективы Python

Один из способов оценки популярности языка программирования — индекс TIOBE. Он рассчитывается на основе количества поисковых запросов в Google и других поисковиках. Учитываются запросы, включающие название языков программирования.

Согласно индексу TIOBE, в августе 2020 года Python занимает третье место в списке самых популярных языков программирования. Он опережает JavaScript, PHP, Swift и другие популярные языки.

«Пайтон» в индексе TIOBE

В рейтинге GitHub Octoverse за 2020 год Python занимает третье место, уступая только JavaScript и Java. Рейтинг Github Octoverse отражает популярность языка среди пользователей GitHub.

«Пайтон» в рейтинге Octoverse

В рейтинге RedMonk «пайтон» также занимает третье место. Сооснователь RedMonk Джеймс Гавернер отмечает, что Python уже стал лингва франка для Data Science. То есть этот язык стал основным для этой отрасли. Тем не менее Гавернер не исключает, что в настоящий момент Python достиг пика популярности.

Справка: термином «лингва франка» называют общеизвестные языки, которые используют для общения представители разных языковых групп. Например, английский язык можно назвать лингва франка в международном общении.

Такого же мнения придерживается аналитик RedMonk Стивен О’Грейди. Он отмечает, что Python в обозримой перспективе удержит позиции, но вряд ли станет таким же популярным, как JavaScript.

Промежуточный итог: Python входит в число самых популярных языков программирования по данным рейтингов TIOBE, GitHub Octoverse и RedMonk. По мнению экспертов RedMonk, этот язык находится на пике популярности, но вряд ли станет таким же массовым, как JavaScript. В следующем разделе рассмотрим перспективы «пайтона» в контексте рынка труда.

Python на рынке труда: зарплаты, вакансии

По данным компании «Мой круг» на первое полугодие 2020 года, медианная зарплата Python-разработчиков составляет 100 000 рублей в месяц. Такие же зарплаты у специалистов по JavaScript и C#. Питонисты зарабатывают больше PHP-разработчиков. Медианные зарплаты программистов на Java, Swift и Scala выше, чем у программистов на Python.

По данным компании NewHR, программисты, работающие на Python, получают от 150 000 до 200 000 рублей. Эти данные справедливы для разработчиков уровня middle, работающих в Москве. Для senior-разработчиков на «питоне» средняя зарплата составляет от 200 000 до 250 000 тысяч рублей в месяц.

Мастер Йода рекомендует:  Как написать простейший компилятор

Ситуацию в регионах можно проверить самостоятельно. Например, по запросу python в Казани на hh.ru 28 августа есть 129 вакансий. Максимальная зарплата составляет 280 000 рублей, минимальная — 30 000 рублей.

Промежуточный вывод: программисты на Python востребованы на рынке труда, медианная зарплата составляет 100 000 рублей.

Python в качестве первого языка для начинающих: сложно ли изучать

Чтобы ответить на этот вопрос, нужно вернуться к истории создания и философии Python. Как отмечалось выше, разработчик языка Гвидо ван Россум захотел создать «пайтон», так как другие языки казались ему слишком сложными и непонятными. Ван Россуму удалось сделать язык, который приносит удовольствие во время обучения и работы.

Python считается одним из лучших и удобных языков для обучения. Значит ли это, что изучать его легко? Скорее нет. Обучение программированию всегда требует дисциплины, прилежания, концентрации.

При выборе первого языка программирования главным преимуществом Python считается простой синтаксис. Среди недостатков можно отметить сложности, которые возникают у начинающих программистов при переходе на языки с более сложным синтаксисом.

Промежуточный итог: если вы только начинаете изучать программирование, Python — отличный выбор.

Перспективы Python: мнение экспертов

Мы попросили известных разработчиков поделиться своими взглядами на перспективы языка программирования «пайтон», ситуацию на рынке труда и обучение.

Григорий Петров: на питонистов сейчас есть огромный спрос, так как этих специалистов меньше, чем открытых вакансий

1. По вашему мнению, почему стоит изучать Python?

Python — лучший язык для обучения программированию. Это язык программирования общего назначения. Создавался как простой язык для людей. Есть баланс между сложностью изучения и сюрпризами, с которыми сталкиваются программисты при работе с языком.

У JavaScript синтаксис лучше, чем у Python. Но в JS есть сюрпризы, например, this или приведение типов типизация. Python не взрывает мозг сюрпризами, он сбалансирован. К тому же, на нём можно делать практически всё, так как это язык общего назначения.

2. Какие перспективы у этого языка программирования по сравнению с другими языками?

Будущее предсказать невозможно. В данный момент популярность Python растёт, язык входит в топ самых популярных. Причин для проблем сейчас не видно.

3. Будет ли Python востребован в будущем?

У Python сильные позиции в серверной разработке, AI, Big Data, в программировании в сфере обучения и науки. В веб-разработке Python востребован в бэкенд части-разработке. Фронтенд скорее всего не для Python, так как в этой нише царствует JavaScript.

В целом в тех нишах, где Python активно используется, этот язык вряд ли уступит позиции другим языкам. То есть он останется востребованным в обозримой перспективе.

4. Каковы перспективы Python-разработчика на рынке труда?

На питонистов сейчас есть огромный спрос, так как этих специалистов меньше, чем открытых вакансий. По деньгам фронтенд разработка принесет чуть больше, но фронтенд изучать сложнее. Ведь не зря хорошим фронтендерам хорошо платят.

5. Сколько нужно учиться разработке на Python с нуля до джуниора?

Однозначного ответа на этот вопрос нет. Стандартизированных программ обучения пока не существует, все разработчики — по сути самоучки. И здесь скорость обучения зависит от человека.

Если учиться 2-3 часа в день, то в течение примерно трёх месяцев можно претендовать на позицию интерна. Это не джуниор-разработчик, а именно интерн. Интерну обычно нужно ещё полгода, чтобы стать джуниором. Но, повторюсь, всё зависит от человека.

Никита Левонович: «Пайтон» активно развивается, о чём свидетельствует сокращение времени релизов новых версий с восемнадцати до девяти месяцев

1. По вашему мнению, почему стоит изучать Python?

Python в настоящее время переживает пик своей популярности, на нём разрабатывают во множестве компаний, на конференции и митапы по данному языку собирается сотни разработчиков. Всё это делает язык «пайтон» не только востребованным, но и простым в изучении. В связи с этим язык «пайтон» стоит изучать.

2. Какие перспективы у этого языка программирования по сравнению с другими языками?

Перспективы языка Python отличные, в данный момент он является вторым лучшим языком для любой задачи. «Пайтон» активно развивается, о чем свидетельствует сокращение времени релизов новых версий с восемнадцати до девяти месяцев.

3. Будет ли Python востребован в будущем?

Да. Насколько долго — вопрос открытый, но в ближайшие 5-10 лет востребованность языка Python, скорее всего, уменьшаться не будет.

4. Сколько нужно учиться разработке на Python с нуля до джуниора?

Все люди разные и для освоения одних и тех же навыков им нужно разное время. А самое главное — на рынке нет единых требований к джуниору. В связи с этим срок обучения может колебаться от 3 месяцев до года.

Николай Марков: без работы толковый питонист точно не останется

Николай Марков, Principal Architect в компании Aligned Research Group

1. По вашему мнению, почему стоит изучать Python?

Python является одним из самых популярных языков общего назначения. Это значит, что на нём можно писать практически всё — от веб-приложений до серьезных низкоуровневых системных штук. Так уж получилось, что у меня есть несколько студентов, род деятельности которых практически никак не связан с программированием, но им захотелось изучать Python. Например, чтобы автоматизировать какие-то ежедневные рутинные задачи, или чтобы лучше понимать исследования, которые проводит аналитический отдел в их компании. Порог вхождения не очень высок, что и позволяет добиться значимых результатов в довольно короткие сроки, а видеть результаты своего труда всегда приятно.

2. Какие перспективы у этого языка программирования по сравнению с другими языками?

Несмотря на то, что язык существует довольно давно, он активно развивается, вбирая в себя всё новые возможности и щеголяя гигантским набором модулей расширения. Кроме того, довольно большое количество разных курсов, начиная от низкоуровневой работы с сетью и кончая Data Science, переехали с других языков на Python в новых версиях. Это можно заметить, например, по проектам на Coursera.

Пусть даже Python и не является явным лидером в каких-то конкретных областях, обычно он достаточно хорош, чтобы решать задачи практически в любой предметной области. И на горизонте навскидку я не могу назвать других языков, которые были бы настолько универсальны.

3. Будет ли Python востребован в будущем?

Лично мне кажется, что Python был и будет востребован как язык для обучения, прототипирования и решения базовых бизнес-задач. И это несмотря на то, что в узком применении зачастую имеет смысл переключиться на более специализированные инструменты. Всё потому, что он дает базу, которая позволяет регулировать глубину погружения в предмет. Инженер может пойти глубже и изучать более узкую сферу, а, скажем, учёному хватит Python в качестве подручного инструмента для основных задач. А дети в школах, например, смогут после нескольких уроков Python создавать вполне рабочие проекты, например, в IoT и решении математических задач. Хорошая замена инженерному калькулятору на занятиях, правда?

4. Каковы перспективы Python-разработчика на рынке труда?

Инженеры со знанием Python до сих пор очень востребованы на рынке в самых разных направлениях и бизнесах. Возможно, сейчас это не даст сразу с улицы привилегированного положения и высоких зарплат, как, скажем, еще 10 лет назад, но без работы толковый питонист точно не останется. И шансы попасть в большую технологическую компанию подобные навыки тоже сильно повышают, если такова ваша цель.

5. Сколько нужно учиться разработке на Python с нуля до джуниора?

Понятие «джуниора» весьма размыто и сильно меняется от компании к компании, или даже между разными командами внутри одного бизнеса. Тем не менее общая тенденция такова, что если вы смогли пройти собеседование на подобную позицию, пусть даже не имея серьезного опыта, то дальше начинается серьезное обучение на реальных проектах. Это гораздо полезнее, чем зубрёжка теории алгоритмов или попытки на коленке с минимальными знаниями собрать продающийся продукт.

Плюс я искренне верю, что вменяемый менеджер выделит такому «джуниору» время и возможность на самообразование внутри компании, включая бесплатные курсы и какой-никакой R&D под присмотром с code review. Так что совет тут простой — читайте требования в вакансиях, соберите на коленке пару прототипов, а дальше — вперёд, по собеседованиям!

Никита Соболев: мы прежде всего просто разработчики, инструмент не так важен

1. По вашему мнению, почему стоит изучать Python?

Да, стоит. Python — самый простой и понятный язык из всех в плане синтаксиса и концепций. В нём минимальное количество магии и неявных моментов. В нём уже заложены несколько парадигм: можно писать в ООП стиле, можно в функциональном. Можно явно проставлять типы в аннотациях, можно сделать их неявными. Учить его приятно и максимально просто. Мне кажется, что «пайтон» — лучший язык, чтобы учиться. И нет, не C (чтобы узнать как работает память!), а «пайтон».

2. Какие перспективы у этого языка программирования по сравнению с другими языками?

Мне кажется, что язык выбрал неправильную стратегию развития. Его реверансы в стороны «асинхронщины» закончились печально. Просто уже столько лет, а оно так и не заработало как нужно: примитивы для асинхронности так и остались на уровне детского сада, а батареек так и не завезли. Более того, саму красоту синтаксиса языка начинают уродовать чуждыми концепциями: f-строки, оператор моржа (он ломает столько всего!). Сама платформа развивается очень медленно и работает также. Я бы дополнительно обратил внимание на Elixir, Rust, F#, и возможно Crystal с Nim.

3. Будет ли Python востребован в будущем?

Тем не менее «пайтон» будет жить еще очень и очень долго. Гандикап огромный, синхронная версия языка всё так же работает. Сравнивать с другими сложно, потому что слишком много сфер для сравнения. В ML всё будет хорошо, для скриптов тоже. В вебе другие языки откусят свою долю.

4. Каковы перспективы Python-разработчика на рынке труда?

Мне не нравится формулировка вопроса. Я вообще не люблю понятие «джанго-разработчик» или «пайтон-разработчик». Мы прежде всего просто разработчики. Инструмент не так важен. Для разных задач нужны разные инструменты. Бэкенд пишут на одном из множества языков, фронт на тайпскрипте (или elm’е!), башскрипты для разного, Elixir для частей с высокой нагрузкой, Rust и Haskell — для души. А есть еще куча всего интересного! Резюме: хорошие разработчики всегда будут нужны, «пайтоны» приходят и уходят.

5. Сколько нужно учиться разработке на Python с нуля до джуниора?

По-разному. Я бы сказал, от года до двух. Зависит от начального уровня, наличия фундаментального образования, без которого в некоторые сферы вход вообще закрыт, знакомства с процессом разработки в целом, мотивации и таланта. У меня ушел где-то год фултайм учёбы + работы.

Заключение: Python — лучший язык для обучения с хорошими перспективами на рынке

Эксперты называют Python если не лучшим, то одним из лучших языков для изучения программирования. Простой синтаксис делает этот язык удобным для восприятия и понятным. Разработчики со знанием Python востребованы на рынке труда. Они работают в сфере веб-разработки, machine learning и Data Science. Выводы делайте самостоятельно. А если у вас остались вопросы по целесообразности изучения «пайтон», пишите их в комментариях.

Где и как применить Python на практике? Три основные сферы его применения. Часть 1

Если вы собираетесь изучать такой язык программирования, как Python, или уже изучаете — у вас может возникнуть резонный вопрос:

«Для решения каких конкретных задач я могу использовать Python?»

Ну что же, это достаточно каверзный вопрос, потому что способов применения для Python много.

Но не волнуйтесь, по мере роста моих знаний в этой области, я выделил 3 основных способа применения для Python, и сейчас я поделюсь ими:

  • Веб-разработка
  • Анализ и работа с данными, а именно: машинное обучение, анализ и визуализация данных
  • Скриптинг

Теперь поговорим о каждом из них.

Веб-разработка

Веб-фреймворки, основанные на языке Python, например, Django и Flask, в последнее время стали крайне популярными в веб-разработке.

Эти фреймворки помогают написать бэкенд-код на Python. Код работает на вашем сервере, а не в браузерах и устройствах пользователей, как это делает фронтенд-код. Если не знаете, в чем разница между фронтенд-кодом и бэкенд-кодом — читайте вторую часть нашей статьи.

Но подождите, зачем мне эти веб-фреймворки?

Используя данные веб-фреймворки, можно значительно упростить себе работу по написанию веб-приложений. Они позволяют реа­ли­зовать любые биз­нес-про­цессы, помогают в рефакторинге старых сайтов, упрощают использование Ajax и многое другое.

Какой фреймворк я должен взять на вооружение?

Django и Flask — два самых популярных веб-фреймворка на Python. Если вы новичок, я бы рекомендовал использовать один из них.

В чем разница между Django и Flask?

За меня на этот вопрос ответит статья Гарета Дуайера. Возьму смелость процитировать её:

  • Flask минималистичен, прост в использовании и гибок, а также у него отсутсвуют какие-либо ограничения.
  • Django похож на тариф «Все включено». В нем есть админ-панель, интерфейс базы данных, ORM (объектно-реляционное отображение) и структура каталогов для готовых приложений и проектов.

Вам стоит выбрать:

  • Flask, если вы заинтересованы в получении профессионального опыта и возможности обучения или же хотите получить больше контроля над тем, какие компоненты используются (например, какие базы данных вы хотите использовать и как взаимодействовать с ними).
  • Django, если вы сосредоточены на конечном результате. Особенно, если работаете над новостным сайтом, интернет-магазином или блогом, и вы хотите, чтобы на сайтах все было предельно понятно и легко для пользователя.

Другими словами, если вы новичок — Flask лучший выбор, потому что он достаточно прост в работе. Также, Flask подходит тем, кому нужно больше кастомизации. Кроме того, по словам моего друга Джонатана Т Хо, Flask более подходит для создания REST API, чем Django. Все благодаря его гибкости в работе.

С другой стороны, если нужно что-то незамысловатое и с четко-поставленной целью — на помощь приходит Django.

Переходим к следующему пункту!

Анализ и работа с данными, а именно: машинное обучение, анализ и визуализация данных


Перво-наперво, разберемся с понятием машинное обучение.

Мне кажется, лучший способ объяснить, что же такое машинное обучение — показать все на простом примере:

Предположим, нужно разработать программу, которая автоматически будет определять предметы на картинках.

Беря за основу картинку № 1, вы хотите, чтобы программа определила, что на ней собака.

Беря за основу картинку № 2, вы хотите, чтобы программа распознала на ней стол.

Где и как применить Python на практике? Три основные сферы его применения

Если вы собираетесь изучать такой язык программирования, как Python, или уже изучаете — у вас может возникнуть резонный вопрос:

«Для решения каких конкретных задач я могу использовать Python?»

Ну что же, это достаточно каверзный вопрос, потому что способов применения для Python много.

Но не волнуйтесь, по мере роста моих знаний в этой области, я выделил 3 основных способа применения для Python, и сейчас я поделюсь ими:

  • Веб-разработка
  • Анализ и работа с данными, а именно: машинное обучение, анализ и визуализация данных
  • Скриптинг

Теперь поговорим о каждом из них.

Веб-разработка

Веб-фреймворки, основанные на языке Python, например, Django и Flask, в последнее время стали крайне популярными в веб-разработке.

Эти фреймворки помогают написать бэкенд-код на Python. Код работает на вашем сервере, а не в браузерах и устройствах пользователей, как это делает фронтенд-код. Если не знаете, в чем разница между фронтенд-кодом и бэкенд-кодом — читайте вторую часть нашей статьи.

Но подождите, зачем мне эти веб-фреймворки?

Используя данные веб-фреймворки, можно значительно упростить себе работу по написанию веб-приложений. Они позволяют реа­ли­зовать любые биз­нес-про­цессы, помогают в рефакторинге старых сайтов, упрощают использование Ajax и многое другое.

Какой фреймворк я должен взять на вооружение?

Django и Flask — два самых популярных веб-фреймворка на Python. Если вы новичок, я бы рекомендовал использовать один из них.

В чем разница между Django и Flask?

За меня на этот вопрос ответит статья Гарета Дуайера. Возьму смелость процитировать её:

  • Flask минималистичен, прост в использовании и гибок, а также у него отсутсвуют какие-либо ограничения.
  • Django похож на тариф «Все включено». В нем есть админ-панель, интерфейс базы данных, ORM (объектно-реляционное отображение) и структура каталогов для готовых приложений и проектов.

Вам стоит выбрать:

  • Flask, если вы заинтересованы в получении профессионального опыта и возможности обучения или же хотите получить больше контроля над тем, какие компоненты используются (например, какие базы данных вы хотите использовать и как взаимодействовать с ними).
  • Django, если вы сосредоточены на конечном результате. Особенно, если работаете над новостным сайтом, интернет-магазином или блогом, и вы хотите, чтобы на сайтах все было предельно понятно и легко для пользователя.

Другими словами, если вы новичок — Flask лучший выбор, потому что он достаточно прост в работе. Также, Flask подходит тем, кому нужно больше кастомизации. Кроме того, по словам моего друга Джонатана Т Хо, Flaskболее подходит для создания REST API, чем Django. Все благодаря его гибкости в работе.

С другой стороны, если нужно что-то незамысловатое и с четко-поставленной целью — на помощь приходит Django.

Переходим к следующему пункту!

Анализ и работа с данными, а именно: машинное обучение, анализ и визуализация данных

Перво-наперво, разберемся с понятием машинное обучение.

Мне кажется, лучший способ объяснить, что же такое машинное обучение — показать все на простом примере:

Предположим, нужно разработать программу, которая автоматически будет определять предметы на картинках.

Беря за основу картинку № 1, вы хотите, чтобы программа определила, что на ней собака.

Беря за основу картинку № 2, вы хотите, чтобы программа распознала на ней стол.

Для того чтобы программа правильно справилась с поставленной задачей, вы просто можете написать соответствующий код. Например, если на картинке много светло-коричневых пикселей, можно сказать, что это собака. Если много прямых краев, то это стол.

Но такой подход слишком сложный, он не учитывает множество факторов. Что делать, если на фотографии изображена белая собака без коричневой шерсти? Или если на картинке стоит круглый стол?

Вот тут-то и появляется машинное обучение

Характерной чертой машинного обучения является не прямое решение задачи, а обучение в процессе решений множества сходных задач.

Вы можете дать программе, скажем, 1000 изображений собаки и 1000 изображений стола для составления алгоритма машинного обучения. Так она поймет разницу между собакой и столом. В следующий раз, когда вы дадите ей новую картину собаки или стола, она скажет, кто есть кто.

Это схоже с тем, как ребенок познает что-нибудь новое. Каким образом ребенок понимает, что одна вещь похожа на собаку, а другая на стол? Вероятно, с помощью примеров.

Вы однозначно не говорите ребенку: «Если что-то пушистое и с светло-коричневой шерстью, то это собака». Вы просто говорите: «Это собака. Просто собака. А это стол. И вот это тоже стол»

Алгоритмы машинного обучения работают точно так же.

Это можно применить:

  • Система рекомендаций (в YouTube, Netflix, Amazon)
  • Распознавание лиц
  • Распознавание голоса
  • И многое другое

Популярные алгоритмы машинного обучения, о которых вы, возможно, слышали:

  • Нейронные сети
  • Глубокое обучение
  • Метод опорных векторов
  • Алгоритм «случайный лес»

Можете использовать любой из вышеперечисленных алгоритмов для решения проблемы с распознаванием предметов на картинке.

Python для машинного обучения

Здесь я расскажу о популярных фреймворках и библиотеках для машинного обучения на Python.

Два самых популярных это scikit-learn и TensorFlow.

  • scikit-learn встроен в некоторые из наиболее популярных алгоритмов машинного обучения. Некоторые из них я упомянул выше.
  • TensorFlow — это библиотека более низкого уровня, которая позволяет создавать кастомные алгоритмы машинного обучения.

Если вы только начинаете работать с проектами по машинному обучению — вам пригодится scikit-learn. А в случае, если вам захочется увеличить эффективность программы или приложения — рекомендую TensorFlow.

Как мне следует начать изучать машинное обучение?

Чтобы понять основы машинного обучения, я советую вам пройти курс Стэндфордского университета или Калифорнийского технологического института.

Предупреждаю, для понимания этих курсов вам нужны базовые знания по линейной алгебре и математике.

Затем вам нужно будет начать практиковать полученные знания, делать это можно на Kaggle. На этом сайте люди соревнуются с друг другом в постройке лучшего алгоритма машинного обучения для решения предложенной на сайте проблемы. Бонусом у них есть очень качественные учебные пособия.

Анализ и визуализация данных

Чтобы помочь вам разобраться в том, о чем я говорю, позвольте мне привести небольшой пример:

Допустим, вы работаете в компании, которая продает свою продукцию в Интернете. Как аналитик, вы должны будете построить вот такой график:

Основываясь на этом графике, можно сказать, что в это воскресенье мужчины купили 400 единиц условного продукта, а женщины около 350 единиц. Исходя из этого, вы должны придумать несколько возможных объяснений такой разницы.

Самое очевидное объяснение: продукт более популярен у мужчин, чем у женщин. Другим возможным объяснением может быть то, что размер графика оказался слишком мал, и эта разница вызвана чисто случайно. И еще одним возможным объяснением может быть то, что мужчины чаще покупают данный продукт в воскресенье по невыясненной причине.

Чтобы установить истинную причину, вы можете нарисовать другой график, подобный этому:

Вместо того, чтобы рассматривать данные только за воскресенье, мы рассматриваем данные за целую неделю. Как вы видите, разница довольно последовательна в различные дни.

Благодаря этому небольшому анализу, мы делаем вывод, что наиболее убедительным объяснением этой разницы является то, что продукт всего-навсего более популярен у мужчин, чем у женщин.

А что, если вы увидите такой график?

Что тогда объясняет такую разницу в воскресенье?

Вы могли бы предположить, что мужчины более склонны к приобретению данного продукта именно в воскресенье по какой-то причине. Или это просто совпадение.

Итак, это был упрощенный пример того, как может выглядеть анализ данных в реальном мире.

Работа по анализу данных, которой я занимался пока работал в Google и Microsoft, очень схожа с верхним примером — только данных было намного больше и анализ сложнее. Я использовал Python для анализа данных в Google, в Microsoft использовал JS.

В обоих компаниях я использовал SQL, чтобы вытащить данные из баз данных. Для визуализации данных я использовал Matplotlib (в Google) и D3.js (в Microsoft).

Анализ данных и визуализация в Python

Одной из самых популярных библиотек для визуализации данных является Matplotlib.

Эта библиотека станет отличным выбором для вас:

  • Вы сможете легко и достаточно быстро ее освоить
  • На ее основе построены многие другие библиотеки, например seaborn. Изучив Matplotlib, в будущем вам будет легче разобраться с другими библиотеками на его основе.

Как мне следует начать анализировать данные с помощью Python?

Сначала вам следует взяться за изучение фундаментальных принципов анализа и визуализации данных. Когда я искал в интернете достойные ресурсы по этой теме — я ничего не нашел. Поэтому, я сам записал обучающее видео на YouTube по этой теме:

Мастер Йода рекомендует:  Как изменить размер таблицы в HTML

Также я создал свой собственный курс по этой теме на Pluralsight, который вы можете пройти бесплатно, подписавшись на их 10-дневную бесплатную пробную версию.

Я бы рекомендовал вам посмотреть и то и другое.

Изучив основы анализа и визуализации данных, вам будет полезно также изучить основы статистики с таких сайтов, как Coursera и Khan Academy.

Скриптинг

Что такое скриптинг?

Скриптинг обычно используется при написании небольших программ для автоматизации простых задач. Позвольте мне привести пример из личного опыта:

Когда-то я работал в небольшом стартапе в Японии, в котором у нас была система поддержки электронной почты. Эта система нужна была нам для того, чтобы мы отвечали на всевозможные вопросы клиентов. И пока я там работал, мне приходилось подсчитывать количество писем, содержащих определенные ключевые слова, чтобы затем мы могли анализировать полученные письма.

Мы могли бы делать это вручную, но вместо этого я написал простой скрипт для автоматизации этой задачи.

В то время, для написания скрипта я использовал Ruby, однако Python также прекрасно подойдет для решения подобного рода задач. В данном случае его основным преимуществом перед Ruby будет простой синтаксис и скорость работы: вы можете быстро написать небольшой скрипт и протестировать его работу.

Что насчет встраиваемых систем?

Я не специалист по встраиваемым системам, но я точно знаю, что Python отлично работает с Rasberry Pi и пользуется популярность среди любителей подобного аппаратного обеспечения.

А как насчет разработки игр?

Вы можете использовать библиотеку PyGame для разработки игр, однако на практике ей пользуются не так уж часто. PyGame подойдет, если вы занимаетесь разработкой игр в качестве хобби или для создания небольшого проекта. Лично я бы не стал разрабатывать серьезный проект на ее основе.

Скорее, я бы рекомендовал вам начать с Unity на языке C #. Движок Unityявляется одним из самых популярных игровых движков в мире — это позволяет вам создавать игры для всех основных платформ, включая Mac, Windows, iOS и Android.

Что насчет приложений для ПК?

Вы можете писать приложения на Python для ПК, используя библиотеку Tkinter, однако это не самый популярный способ.

На сегодняшний день, для написания приложений для ПК, гораздо чаще используют такие языки, как Java, C # и C ++ . Совсем недавно, некоторые компании начали использовать JavaScript в качестве основного языка разработки.

Например, настольное приложение Slack было создано с помощью фреймворка Electron — который позволяет разрабатывать нативные графические приложения для настольных операционных систем с помощью веб-технологий.

Если бы мне пришлось писать приложение для ПК, то лично я бы использовал JavaScript — это позволило бы мне повторно использовать код из веб-версии. Тем не менее, я не специалист в разработке настольных приложений.

Python 3 или Python 2?

Я бы порекомендовал вам использовать Python 3, поскольку на сегодняшний день он более современен и популярен.

Разница между back-end и front-end кодом (на тот случай, если вы не можете в этом разобраться):

Предположим, вы хотите создать свой собственный проект — что-то вроде Instagram.

Сначала, вам придется написать frontend код для каждого типа устройств и ОС, которые вы будете поддерживать. Для этого вы можете использовать, например:

  • Swift для iOS
  • Java для Andro >Каждый из наборов кода будет использоваться в зависимости от используемого устройства или браузера. Он будет определять компоновку дизайна, как должны выглядеть кнопки при нажатии на них и т. д. То есть front-end код будет определять все, что касается графического интерфейса приложения.

Затем вам нужно позаботиться о возможности хранения информации и фотографий пользователей на своих серверах. Иначе пользователи просто не смогут просматривать фотографии и информацию других пользователей.

Вот здесь то нам и нужен back-end / server-side код. Вам нужно будет написать backend код, для возможности выполнения подобных операций:

  • Обрабатывать: кто на кого подписался и кому поставил лайк
  • Сжимать фотографии пользователей, чтобы они не занимали слишком много места на ваших серверах
  • Рекомендовать пользователям фотографии других пользователей и т. д.

Проще говоря, front-end код нужен для создания дизайна и интерфейса приложения или сайта. А back-end код обеспечивает взаимодействие с сервером. В этом и заключается разница между frontend и backend кодом.

Кстати, Python — не единственный хороший вариант для написания backend / server-side кода. Есть много других популярных и неплохих вариантов, которые вы можете использовать, включая Node.js, который основан на JavaScript.

Понравилась ли вам эта статья? Возможно, вам также понравится мой Youtube канал

У меня есть канал обучения программированию на YouTube, который называется CS Dojo с 440 000 + подписчиками, где я регулярно выпускаю качественный контент.

Например, вам могут понравиться эти видеоролики:

В любом случае, спасибо за прочтение!

Что такое Python и для чего он используется

Python — это высокоуровневый язык программирования, который используется в различных сферах IT, таких как машинное обучение, разработка приложений, web, парсинг и другие.

В 2020 году Python стал самым популярным языком программирования, обогнав Java на 10%. Это обусловлено многими причинами, одна из которых — высокая оплата труда квалифицированных специалистов (около 100 тысяч долларов в год).

Язык программирования Python

Различные языки программирования обычно доминируют в какой-то отрасли (или нескольких), для работы в которой они хорошо подходят. Но это не значит, что программист ограничен использовать строго определённый инструмент, поэтому любой язык общего назначения, такой как Python, может применять для создания чего-угодно.

Python смог захватить малую часть рынка веб-разработки, иногда используется для написания десктопных приложений и, конечно, тотально доминирует в сфере машинного обучения. Кроме того, на нём создаётся много прототипов, которые позволяют быстро набросать функционал и внешний вид будущего проекта.

Происхождение названия

Автор языка Python назвал его в честь британского комедийного шоу “Monty Python”, которое было популярно в начале 1970-х годов.

Это телешоу позволяло автору расслабиться и отвлечься от разработки языка. Однако, несмотря на настоящее происхождение названия, для людей более очевидно связывать Python со словом “змея”. Этому также способствует логотип, на котором изображена рептилия.

И хотя создатель языка не раз говорил, что название никак не связано со змеями, повлиять на мнение общества так и не удалось.


Питон или Пайтон?

Будь то название британского телешоу или английское звучание слова “змея”, Python правильно произносить, как Пайтон. Однако, около 80% Российского сообщества привыкли использовать слово “Питон”.

Нельзя сказать, что однозначно правильно использовать один из вариантов, многие названия адаптируются под произношения конкретного языка, а изменить сложившиеся привычки общества очень сложно. Однако, вариант названия “Питон” уместно употреблять только в разговоре с русскоязычными собеседниками, потому что на любой международной конференции значение слова “Питон” просто не поймут, ведь в английском языке его нет, есть только “Python (Пайтон)”.

Логотип

На логотипе изображены две змеи, образующие квадрат с выпуклым центром, это часто вводит в заблуждение пользователей, вынуждая ассоциировать название языка с рептилией.

Логотип создал брат автора, Юст ван Россум — программист и шрифтовой дизайнер. Он разработал как дизайн логотипа (две змеи), так и шрифт текста Flux Regular.

История создания

Язык начал разрабатывать программист, Гвидо ван Россумом, в конце 1980-х. На тот момент он работал в центре математики и информатике в Нидерландах.

Гвидо ван Россум увлекался работой с «железками» ещё со школьных лет, и хотя он не находил поддержки и одобрения у своих сверстников, это не помешало ему самостоятельно разработать язык программирования.

Россум работал над Python в свободное время, в качестве основы он взял язык программирования ABC, в разработке которого когда-то участвовал.

Этапы истории языка программирования Python:

  • В феврале 1991 исходный код языка был опубликован на alt.sources. Уже тогда язык придерживался объектно-ориентированного подхода, мог работать с классами, наследованием, функциями, обработкой исключений и всеми основными структурами данных.
  • В 2000 году вышла в релиз вторая версия Python. В неё добавили много важных инструментов, включая поддержку Юникода и сборщик мусора.
  • 3 декабря 2008 в релиз вышла третья версия Python, которая является основной до сих пор. Многие особенности языка были переделаны и стали несовместимы с предыдущими версиями. И хотя функциональность третьей версии ничем не уступает второй, развитие языка разделилось на две ветки. Кто-то продолжал использовать Python 2, чтобы поддерживать старые проекты, кто-то полностью перешёл на третью версию.

Дату смерти второй версии установили на 2015 год, однако, боясь не успеть перенести весь существующий код на Python 3, время жизни Python 2 продлили жизнь до 2020 года.

Python — простой язык

Синтаксис Питона всегда выделял его на фоне других языков программирования. Он не страдает избыточностью, схожесть синтаксиса с обычным английским позволяет понять код даже обычному пользователю, кроме того, программист пишет меньше строк кода, потому что нет необходимости использовать символы: «;», «<», «>». Вложенность обозначается отступами, что повышает читаемость кода и приучает новичков к правильному оформлению.

Python упрощает написание кода и делает разработку быстрой, всё потому что он обладает следующими особенностями:

  • Динамическая типизация. Программисту не нужно указывать тип переменных, язык присвоит его сам. Операнды разных типов, участвующие в одной операции, автоматически приводится к нужному по определённым правилам.
  • Удобный возврат нескольких значений функцией. Их можно перечислить через запятую и они автоматически преобразуются в список. Чтобы вернуть массив из функции, достаточно написать “ return имя_массива “. Не нужно выделять память и передавать указатели в функцию.
  • Автоматическое выделение памяти. Программисту не нужно самостоятельно выделять память под что-либо. С одной стороны это уменьшает контроль программиста над программой, с другой, разработка значительно ускоряется.
  • Сборщик мусора. Если объект становится бесполезным (на него перестаёт что-либо ссылаться), он автоматически удаляется сборщиком мусора. Сборщик мусора позволяет оптимизировано использовать память и не удалять бесполезные объекты вручную.
  • a, b = b, a. Эта строка меняет местами значения переменных, теперь то, что было в a, находится в b и наоборот. Такое возможно, потому что Питон сначала рассматривает переменные справа от знака “=” и помещает их в список, то же он делает с элементами слева от “=”, затем он связывает каждый элемент правого списка с левым. Таким способом можно обменивать значения не только двух переменных, но и трёх, пяти и так далее.
  • Привязка типа данных. Тип данных привязан к значению, а не к переменной. То есть значение — это какой-то объект с атрибутами, которые определяют его тип и другие характеристики, а переменная — просто ссылка на этот объект. Такой подход позволил обойтись без явного определения типов и значительно упростил повторное присваивание значения переменной (особенно, если тип нового значения отличен от начального).
  • Цикл for. Работать с массивами, списками и другими контейнерами в Питоне просто и удобно. Когда необходимо перебрать все его элементы, конструкция выглядит так: “ for x in контейнер: ” (перебор идёт от 0 до последнего элемента, его индекс можно обозначить как -1). Если нужно, чтобы прошло определённое количество циклов, пишут так: “ for x in range(1,9): ” (цикл будет выполняться со значениями x от 1 до 8).
  • Интерпретируемый язык. Написанный код не нужно компилировать, достаточно запустить его и получить результат. Более того, можно работать в интерактивном режиме и получать результат буквально после каждой операции.

Чтобы ускорить разработку, часть программы (обычно не сильно влияющую на скорость работы) пишут на Питоне.

Именно благодаря простоте этот язык программирования смог занять доминирующее место в сфере машинного обучения. Люди, так или иначе связанные с наукой, предпочитают не тратить много времени на такие вещи, как написание кода, поэтому Python отлично подошёл для реализации поставленных перед ними задач.

Пример кода:

Популярность

Несмотря на то что языку уже более 29 лет, он популярен среди программистов всего мира. Python используется почти в каждом среднем или крупном проекте, если не как основной инструмент разработки, то как инструмент для создания прототипа или написания какой-то его части.

Он собрал вокруг себя огромное сообщество разработчиков, по результатам опроса на Stackoverflow Python занял 7 место с почти 39% голосов.

Индекс TIOBE

Этот индекс показывает популярность языков программирования, информация обновляется каждый месяц. Оценка популярности основывается на количестве квалифицированных специалистов по всему миру. Для анализа также используются все популярные поисковые системы. Важно понимать, что индекс не показывает лучший язык программирования, он лишь показывает их популярность.

Согласно индексу TIOBE Python занял 3 место с 9-ю процентами популярности. Он уступил лишь языкам Java и C.

Этот индекс основывает на количестве поисковых запросов, касающихся учебных материалов по языку.

По данным с PYPL Python занимает первое место с более чем 29% популярности и на 10% обгоняет Java.

statista.com

Сервис предоставляет различные виды статистики, среди которых – популярность языков программирования.

Согласно опросу более 85 тысяч респондентов, Python занимает 4 место, уступив таким языкам, как JS, языки разметки и SQL.

Скорость работы

Программисты часто задаются вопросом: “Не приведёт ли использование Python к снижению производительности?”. Не стоит делать какие-либо выводы без детального разбирательства.

Если рассматривать только скорость выполнения кода, то становится ясно, что Python уступает другим языкам программирования, таким как C. Действительно, динамическая типизация, интерпретируемость и другие особенности, облегчающие работу программиста, приводят к ухудшению производительности.

Для любого проекта важно выбрать правильный инструмент и лучшую реализацию. Улучшая одно, программист жертвует другим, его задача — найти идеальный баланс, ориентируясь на конкретное техническое задание.

Python позволяет писать достаточно быстрый код, однако может подводить в некоторых “узких” местах, которые и оказывают наибольшее влияние на производительность всего проекта. Чтобы не затянуть разработку и получить на выходе программу, работающую на высокой скорости, её структуру проектируют так, чтобы соотношение “быстродействие/время разработки” было максимальным.

Программисты используют приёмы, позволяющие нивелировать недостаточную скорость выполнения программ на Pyton:

Где применяется Python: 3 основных назначения языка

Прежде чем начать изучать тот или иной язык программирования, люди обычно задумываются, как потом смогут применить свои знания и навыки на практике. Что касается Python, этот язык общего назначения пригодится во множестве различных сфер. DEV.BY опубликовал перевод статьи, в которой разработчик и основатель стартапа CS Dojo Ек Суги рассказал о трёх самых частых способах использования Python.

1. Веб-разработка

Фреймворки, основанные на Python, такие как Django и Flask, в последнее время приобрели широкую популярность среди веб-разработчиков. Эти фреймворки позволяют создавать серверный код (backend-код) на Python, который выполняется на сервере, в отличие от frontend-кода, исполняемого на пользовательских устройствах и в браузерах.

Для чего нужны веб-фреймворки

Веб-фреймворки упрощают разработку серверной логики: обработку URL, обращение к базам данных, создание HTML-файлов, которые видят в браузерах пользователи.

Какие фреймворки для веб-разработки лучше использовать

Два наиболее популярных веб-фреймворка для Python — Django и Flask. Их рекомендуется использовать начинающим разработчикам.

В чём разница между Django и Flask

Отличную статью в ответ на этот вопрос подготовил Гарет Дуайер.

  • Flask — простой и гибкий фреймворк с очень подробными настройками. Пользователь может сам решать, как реализовывать те или иные вещи.
  • Django предоставляет полный функционал для разработки приложений прямо «из коробки»: встроенный интерфейс администратора, API доступа к базам данных, ORM, и структуру каталогов для приложений и проектов.
  • Flask, если цель разработчика — опыт и возможности обучения, или же если ему нужно самостоятельно выбирать, какие компоненты использовать (например, какие применять базы данных или как взаимодействовать с ними).
  • Django, если главное — конечный продукт. Особенно, если нужно построить интуитивное приложение, например, новостной сайт, онлайн-магазин, блог, в котором пользователь сможет легко ориентироваться.

Таким образом, Flask предпочтительнее использовать новичкам, потому что этот фреймворк имеет не настолько богатый функционал, а также тем, кому важна возможность настроить его по своему усмотрению. Кроме того, благодаря своей гибкости Flask больше, чем Django, подойдёт для разработки REST API. С другой стороны, если требуется создать простой продукт, быстрее это получится сделать на Django.

2. Обработка данных (включая машинное обучение, анализ и визуализацию данных)

Что такое машинное обучение

Машинное обучении лучше объяснять на наглядном примере. Пусть нужно разработать программу, которая автоматически распознаёт изображённые на картинках объекты. На первой картинке программа должна опознать собаку.

На второй она должна распознать стол.

Первый путь — написать для этого специальный код. Например, если на картинке много светло-коричневых пикселей, значит, на ней нарисована собака. Или можно найти способ распознавать границы предметов: если на рисунке много прямых линий, то это — стол.

Очевидно, что такое решение будет бесполезным, если на картинке показана, например, собака светлого окраса, у которой вообще нет коричневой шерсти, или только круглая столешница без ножек. Именно здесь раскрываются перспективы машинного обучения.

В машинном обучении обычно используют алгоритм, который автоматически ищет заданный образ во входных данных. Например, можно ввести тысячу картинок с собаками и тысячу — со столами. Далее алгоритм машинного обучения выявит разницу между собакой и столом. Когда алгоритм получит новое изображение собаки или стола, то сможет идентифицировать объект.

То есть систему обучают на конкретных примерах: ей не указывают отдельные признаки того или иного предмета, а показывают множество изображений и говорят, что на всех из них нарисован этот предмет. Аналогичным образом обучаются

  • системы распознавания лиц,
  • системы распознавания голоса,
  • рекомендательные системы сайтов вроде YouTube, Amazon или Netflix.

Самые широко известные алгоритмы машинного обучения:

  • нейронные сети,
  • глубокое обучение,
  • метод опорных векторов,
  • «случайный лес».

Любой из этих алгоритмов можно использовать для решения задачи с маркированием изображений выше.

Python для машинного обучения

Для Python есть популярные библиотеки и фреймворки машинного обучения. Две самые крупные из них — scikit-learn и TensorFlow. В scikit-learn встроены некоторые общеизвестные алгоритмы машинного обучения, о которых шла речь выше. TensorFlow — более низкоуровневая библиотека, которая позволяет строить пользовательские алгоритмы.

Как изучать машинное обучение

Чтобы изучить основы этой технологии, можно пройти курсы Стэнфордского университета или Калифорнийского технологического института. Но для понимания некоторого материала понадобятся базовые знания матанализа и линейной алгебры.

Далее полученную информацию нужно закрепить на сайте Kaggle. Здесь можно соревноваться с другими разработчиками в создании лучшего алгоритма машинного обучения для различных задач. Сайт также предлагает полезные самоучители для начинающих.

Анализ данных и визуализация данных

В качестве примера можно взять аналитика данных воображаемой компании, занимающейся продажей товаров через интернет. Аналитик может представить результаты продаж в виде столбчатой диаграммы.

Столбчатая диаграмма 1, построенная на Python. Ек Суги

На диаграмме видно, что в заданное воскресенье покупатели мужского пола приобрели более 400 единиц товара, а женского — около 350. У специалиста может быть несколько предположений, почему возник этот разрыв.

Одно из очевидных объяснений — продукт более востребован среди мужчин, чем женщин. Другая возможная причина — недостаточно большая выборка, а разницу можно списать на случайность. Третий вариант — по какой-то причине мужчины склонны больше покупать этот продукт только в воскресенье. Чтобы понять, какое из объяснений истинно, можно нарисовать ещё одну диаграмму.

Линейная диаграмма 1, построенная на Python. Ек Суги

Необходимо принять во внимание статистику продаж не только в воскресенье, но и за всю неделю. Как видно из диаграммы, такая динамика прослеживается по всем дням. Этот небольшой анализ позволяет сделать вывод, что наиболее правдоподобная причина различия в продажах в том, что продукт просто более популярен среди мужчин, чем среди женщин.

Но если бы диаграмма выглядела так,

Линейная диаграмма 2, также построенная на Python Ек Суги

можно было бы заключить, что по той или иной причине мужчины активнее покупают этот товар только по воскресеньям.

Это очень простой пример анализа данных. И для этого компании используют в том числе Python, а для визуализации данных — библиотеку Matplotlib.

Анализ и визуализация данных на Python

Matplotlib — одна из наиболее распространённых библиотек для визуализации данных. Начинать лучше с неё потому, что она проста, а также потому, что на ней основаны некоторые другие библиотеки, например, seaborn. Поэтому знание Matplotlib поможет в будущем освоить и их.

Как изучать анализ и визуализацию данных на Python

В первую очередь нужно выучить основы. Ек Суги предлагает собственное вводное видео в анализ и визуализацию данных на Python и Matplotlib на YouTube, а также полный практический курс на образовательной платформе Pluralsight, который можно получить бесплатно после подписки на 10-дневный пробный период на сайте. После этого полезно изучить основы статистики, например, на Coursera и Khan Academy.

3. Написание скриптов

Что такое написание скриптов

Обычно под этим понимают создание небольших программ для автоматизации простых задач. Например, компании используют различные системы поддержки клиентов по электронной почте. Чтобы анализировать полученные сообщения, компаниям нужно подсчитать, какой их количество содержит определённые ключевые слова.

Это можно либо делать вручную, либо написать незамысловатую программу (скрипт) для автоматической обработки сообщений. Для подобных задач отлично подходит Python, главным образом благодаря относительно простому синтаксису и потому, что на нём можно легко и быстро писать и тестировать небольшие проекты.

Python и встраиваемые приложения

На этом языке ведут программирование многие разработчики для Raspberry Pi и других аппаратных основ.

Python и компьютерные игры

Для разработки игр можно использовать библиотеку PyGame, хотя существуют и более популярные игровые движки. На ней можно создавать любительские проекты, но для разработки серьёзных игр стоит поискать что-то получше.

Например, можно начинать с Unity на C# — это одна из самых общеизвестных сред разработки компьютерных игр. Она позволяет создавать межплатформенные игры для Windows, Mac, iOS и Android.

Python и десктопные приложения

Десктопные приложения можно разрабатывать на Python с помощью Tkinter, но это также не самый частый выбор: разработчики приложений для ПК предпочитают языки Java, C#, и C++. В последнее время некоторые компании для этого начали применять и JavaScript. Например, десктопное приложение Slack построено во фреймворке Electron, использующем JavaScript. Этот язык даёт возможность повторно использовать код из веб-версии приложения, если такая имеется.

Python 3 или Python 2

Лучше выбрать Python 3, потому что на сегодняшний день это более современная и более востребованная версия языка.

3 самых важных сферы применения Python: возможности языка. #[email protected]

Существует множество областей применения Python, но в некоторых он особенно хорош. Разбираемся, что же можно делать на этом ЯП.

3 самых важных сферы применения Python: возможности языка

Комментарии (10)

Артемий Неважно

да его почти где угодно можно применять

Макс Санковский

Flask раньше вроде был, как устаревший и не развивался. Что-то поменялось? Он снова ожил и конкурент Джанго?

Никита Довидченко

Теплые, имхо, микросервисы только на фласке и пишут. Сейчас еще появился Quart, который уже нативно асинхронный и такой же простой как flask, но я его не смотрел пока

Макс Санковский

Никита, спасибо, я просто пару лет назад последний раз брал Py. Просто помню, что года 3 назад Фласк был вроде на половину мертвый.

Александр Корицкий

Теплые, не, они ж даже недавно наконец-то официально объявили о новой версии.

Виталий Бурачёнок

Классно на нем костыли какие-нибудь быстро запиливать 🙂

Владислав Хорунжий

Виталий, это пожалуй единственное правильное его применение

Макс Санковский

Александр, збс, теперь буду знать, даже ради фана, зашел посмотреть доку, как там контроллеры и роуты прописывают 🙂

Максим Лихачёв

Задолбали с этой монетизацией. Почему я должен переходить на какой-то сайт, чтобы прочитать статью??

Тёма Капкин

Максим, бедняжечка, один клик-то сделать сложно

О проекте


Данный сайт является агрегатором контента из популярных социальных сетей. Добавление новых материалов производится в автоматическом режиме. Администрация проекта не несет ответственности за их содержание.

Что можно делать с помощью Python?

Будучи удачно спроектированным языком программирования Python прекрасно подходит для решения реальных задач из разряда тех, которые разработчикам приходится решать ежедневно. Он используется в самом широком спектре применений — и как инструмент управления другими программными компонентами, и для реализации самостоятельных программ. Фактически круг ролей, которые может играть Python как многоцелевой язык программирования, практически не ограничен: он может использоваться для реализации

всего, что угодно, — от веб-сайтов и игровых программ до управления роботами и космическими кораблями.

Однако сферу использования Python в настоящее время можно разбить на несколько широких категорий. Следующие несколько разделов описывают наиболее типичные области применения Python в наши дни, а также инструментальные средства, используемые в каждой из областей. У нас не будет возможности заняться исследованием инструментов, упоминаемых здесь. Если какие-то из них заинтересуют вас, обращайтесь на веб-сайт проекта Python за более

Системное программирование

Стандартная библиотека Python полностью отвечает требованиям стандартов POSIX и поддерживает все типичные инструменты операционных систем: переменные окружения, файлы, сокеты, каналы, процессы, многопоточную модель выполнения, поиск по шаблону с использованием регулярных выражений, аргументы командной строки, стандартные интерфейсы доступа к потокам данных, запуск команд оболочки, дополнение имен файлов и многое

Кроме того, системные интерфейсы в языке Python созданы переносимыми, например сценарий копирования дерева каталогов не требует внесения изменений, в какой бы операционной системе он ни использовался. Система Stackless Python, используемая компанией EVE Online, также предлагает улучшенные решения, применяемые для параллельной обработки данных.

Графический интерфейс

tkinter без изменений могут использоваться в MS Windows, X Window (в one-рационных системах UNIX и Linux) и Mac OS (как в классической версии, так и в OS X). Свободно распространяемый пакет расширения PMW содержит дополнительные визуальные компоненты для набора tkinter. Кроме того, существует прикладной интерфейс wxPython GUI API, основанный на библиотеке C++, который предлагает альтернативный набор инструментальных средств построения переносимых графических интерфейсов на языке Python.

Инструменты высокого уровня, такие как PythonCard и Dabot построены на основе таких API, как wxPython и tkinter. При выборе соответствующей библиотеки вы также сможете использовать другие инструменты создания графического интерфейса, такие как Qt (с помощью PyQt), GTK (с помощью PyGtk), MFC (с помощью PyWin32), .NET (с помощью IronPython), Swing (с помощью Jython — реализации языка Python на Java, которая описывается в главе 2, или JPype). Для разработки приложений с веб-интерфейсом или не предъявляющих высоких требований к интерфейсу можно использовать Jython, веб-фреймворки на языке Python и CGI-сценарии, которые описываются в следующем разделе и обеспечивают дополнительные возможности по созданию пользовательского интерфейса.

Веб-сценарии

писем электронной почты; загружать веб-страницы с указанных адресов URL; производить разбор разметки HTML и XML полученных веб-страниц; производить взаимодействия по протоколам XML-RPC, SOAP и Telnet и многое другое.

Библиотеки, входящие в состав Python, делают реализацию подобных задач удивительно простым делом.

Кроме того, существует огромная коллекция сторонних инструментов для создания сетевых программ на языке Python, которые можно найти в Интернете. Например, система HTMLGen позволяет создавать HTML-страницы на основе описаний классов Python. Пакет mod_python предназначен для запуска сценариев на языке Python под управлением веб-сервера Apache и поддерживает шаблоны механизма Python Server Pages. Система Jython обеспечивает

бесшовную интеграцию Python/Java и поддерживает серверные апплеты, которые выполняются на стороне клиента.

Помимо этого для Python существуют полноценные пакеты веб-разработки, такие как Django, TurboGears, web2py, Pylons, Zope и WebWare, поддерживающие возможность быстрого создания полнофункциональных высококачественных веб-сайтов на языке Python. Многие из них включают такие возможности, как объектно-реляционные отображения, архитектура Модель/Представление/Контроллер (Model/View/Controller), создание сценариев, выполняющихся на стороне сервера, поддержка шаблонов и технологии AJAX, предоставляя

законченные и надежные решения для разработки веб-приложений.

Интеграция компонентов

системы на языке С и C++ делает его удобным и гибким языком для описания поведения других систем и компонентов. Например, интеграция с библиотекой на языке С позволяет Python проверять наличие и запускать библиотечные компоненты, а встраивание Python в программные продукты позволяет производить настройку программных продуктов без необходимости пересобирать эти продукты или поставлять их с исходными текстами.

Такие инструменты, как Swing и SIP, автоматически генерирующие программный код, могут автоматизировать действия по связыванию скомпилированных компонентов в Python для последующего их использования в сценариях, а система Cython позволяет программистам смешивать программный код на Python и С. Такие огромные платформы на Python, как поддержка СОМ

в MS Windows, Jython — реализация на языке Java, IronPython — реализация на базе .NET и разнообразные реализации CORBA, предоставляют альтернативные способы организации взаимодействий с программными компонентами. Например, в операционной системе Windows сценарии на языке Python могут использовать платформы управления такими приложениями, как MS Word и Excel.

Приложения баз данных

Стандартный модуль pickle реализует простую систему хранения объектов, что позволяет программам сохранять и восстанавливать объекты Python в файлах или в специализированных объектах. В Сети можно также найти систему, созданную сторонними разработчиками, которая называется ZODB.

Она представляет собой полностью объектно-ориентированную базу данных

для использования в сценариях на языке Python. Существуют также

инструменты, такие как SQLObject и SQLAlchemy, которые отображают

реляционные таблицы в модель классов языка Python. Начиная с версии Python 2.5,

стандартной частью Python стала база данных SQLite.

Быстрое создание прототипов

оставить на языке Python, что существенно упростит сопровождение и использование такой системы.

Программирование математических

и научных вычислений

Дополнительные инструменты математических вычислений для Python поддерживают возможность создания анимационных эффектов и трехмерных объектов, позволяют организовать параллельные вычисления и так далее. Например, популярные расширения SciPy и ScientificPython предоставляют дополнительные библиотеки для научных вычислений и используют возможности расширения NumPy.

Игры, изображения, искусственный интеллект,

XML роботы и многое другое

• Создавать игровые программы и анимационные ролики с помощью

• Обмениваться данными с другими компьютерами через последовательный

порт с помощью расширения PySerial

• Обрабатывать изображения с помощью расширений PIL, PyOpenGL,

Blender, Maya и других

• Управлять роботом с помощью инструмента PyRo

• Производить разбор XML-документов с помощью пакета xml, модуля xmlrp-

clib и расширений сторонних разработчиков

• Программировать искусственный интеллект с помощью эмулятора нейро-

сетей и оболочек экспертных систем

• Анализировать фразы на естественном языке с помощью пакета NLTK.

Можно даже разложить пасьянс с помощью программы PySol. Поддержку многих других прикладных областей можно найти на веб-сайте PyPI или с помощью поисковых систем (ищите ссылки с помощью Google или на сайте http://www.python.org).

Вообще говоря, многие из этих областей применения Python — всего лишь разновидности одной и той же роли под названием «интеграция компонентов». Использование Python в качестве интерфейса к библиотекам компонентов, написанных на языке С, делает возможным создание сценариев на языке Python для решения задач в самых разных прикладных областях. Как универсальный, многоцелевой язык программирования, поддерживающий возможность интеграции, Python может применяться очень широко.

Что можно делать с Python?

У вас получилось: вы закончили курсы, или дочитали книгу, которая дает вам базу для программирования в Python. Вы освоили списки, словари, классы, может даже некоторые объектно-ориентированные концепции.

И что дальше?

Python – это очень универсальный язык программирования, с плеядой пользователей во всех возможных сферах. Если вы освоили основы Python, и хотите построить на нем что-нибудь – важно понять, какой первый шаг следует сделать.

Содержание:

В данной статье мы рассмотрим несколько разных проектов, ресурсов и руководств, которые вы можете использовать для создания чего-либо в Python.

Что другие делают в Python?

Вы, наверное, думаете, что люди создают в Python в реальной жизни? Для начала, давайте быстренько пройдемся по крупным компаниям, которые используют данный язык.

Google, к примеру, использовали Python с самого начала, и сегодня он занимает место ведущих гигантов среди языков, ориентированных на серверную сторону. Гвидо ван Россум, добрый пожизненный диктатор Python (уже нет) даже работал нам на протяжении нескольких лет, наблюдая за тем, как развивается язык.

Spotify использует язык из-за его сервисов анализа данных и бэкенда. Согласно команде разработчиков, простота использования Python позволяет достичь молниеносной скорости разработки. Spotify выполняет тонны анализов, чтобы собирать рекомендации своим пользователям, так что им нужно что-нибудь, что может выполнять такую работу быстро. Python – это решение!

Что я могу делать в Python?

Начиная с веб разработки до работы с научными данными, машинным обучением, и пр., приложения Python не имеют границ. Рассмотрим несколько проектов, которые помогут вам развить ваши навыки работы с Python.

#1: Автоматизация нудных дел

Это ресурс по «практическому программированию для начинающих». Как и говорится в заголовке, с этой книгой вы можете узнать, как автоматизировать скучные процессы, такие как обновление электронных таблиц, или переименовывать файлы на компьютере. Это отличная отправная точка для тех, кто уже освоил основы Python.

У вас будет шанс попрактиковаться в том, что вы уже выучили на данный момент, создавая словари, проводя скрейпинг сайтов, работая с файлами и создавая объекты и классы. Практические приложения, встречающиеся в этой книге дадут вам реальное представление о том, что вы можете делать незамедлительно.

#2: Держать руку на курсе Биткоина

Похоже, что сегодня о Bitcoin Python говорят все. С тех пор, как в декабре 2020, когда курс почти поднялся до отметки в 20 000 долларов, криптовалюта стала на слуху у миллионов. Цена продолжает колебаться, но многие считают инвестиции целесообразными.

Если вы хотите обогатиться на виртуальном золоте и хотите знать, когда делать следующий шаг, то вам нужно иметь представление о лучших ценах на bitcoin. Это руководство может научить вас, как использовать навыки работы в Python, чтобы построить собственную систему уведомлений о курсе Bitcoin.

Основа этого проекта – это создание IFTTT (if this, then that) апплетов. Вы узнаете, как использовать библиотеку requests для отправки запросов HTTP и как использовать webhook для подключения вашего приложения к внешним сервисам.

Этот проект – отличная отправная точка для начинающего питониста, который заинтересован в крипте. Сервис, который вы построите с данным руководством может быть расширен под другие валюты, так что если вы также рассматриваете Ethereum – двери открыты!

#3: Создание калькулятора

Этот простой проект – отличный шлюз в мире GUI программирования. Создание бекенд сервисов – это важная часть развертывания, но может появиться необходимость во фронтенде, которую стоит учитывать. Создание приложений, которыми пользователи могут легко пользоваться – это первостепенная важность.

Если вам интересен UX\UI дизайн, то это руководство вам понравится. Вы будете работать с модулем tkinter, стандартным пакетом графического пользовательского интерфейса, который поставляется вместе с Python.

Модуль tkinter – это обертка вокруг Tcl/Tk, комбинация скриптового языка Tcl и расширения фреймворка графического пользовательского интерфейса Tk. Если у вас есть установленный Python, то у вас уже есть готовый к использованию tkinter. Вам нужно сделать простой вызов перед началом:

После проведения установки, вы можете начать работу с постройкой своего первого GUI калькулятора в Python.
Попрактикуйтесь в использовании модуля tkinter и наблюдайте за тем, как ваше виденье материализуется на экране. После того, как вы окрепнете, вы можете начать работать с другими GUI инструментами Python. Ознакомьтесь к официальной документацией GUI программирования в Python для дополнительной информации.

#4: Майнинг данных Twitter

Благодаря интернету, и (все чаще и чаще) интернету вещей (IoT) – у нас есть доступ к огромному количеству данных, о которых не могли мечтать всего десять лет назад. Аналитика – это огромная часть любой сферы, которая связана с данными. О чем люди разговаривают? Какие шаблоны видны в их поведении?

Твиттер – отличное место, чтобы получить ответы на эти вопросы. Если вам интересен анализ данных, тогда майнинг данных в Twitter – отличный способ попробовать свои навыки в Python, чтобы ответить на вопросы об окружающем мире.

В учебном пособии по анализу Твиттера позволит вам получать данные из Твиттера и анализировать настроения пользователей в среде docker. Вы узнаете, как регистрировать приложение вместе с Твиттером, это понадобиться вам, чтобы получить доступ к потоковым API.

Вы увидите, как использовать Tweepy для фильтрации твитов, которые вы хотите вытягивать, TextBlob для подсчета настроения этих твитов, Elasticsearch для анализа содержимого этих твитов и Kibana для показа результатов. По окончанию данного руководства, вы уже будете готовы к тому, чтобы заняться другими проектами, которые используют Python для обработки текстов и распознавания речи.

#5: Создание микроблога с помощью Flask

Похоже, что у каждого сегодня есть блог, и нет ничего плохого в том, чтобы иметь собственный уютный хаб онлайн. С развитием Twitter и Instagram, микроблоги стали чрезвычайно популярными. В этом проекте Мигеля Гринерга, вы научитесь создавать собственный микроблог.

Он называется «Мега-руководство Flask», и однозначно соответствует названию. Проработав 23 главы, вы получите глубокое представление о веб-фреймворке Flask. К концу проекта, вы сможете создать полностью работающее веб приложение.
Вам не нужно знать что-либо о Flask, чтобы приступить к делу, так что это идеально для тех, у кого чешутся руки, чтобы приступить к веб разработке.

Руководство недавно было обновлено, и теперь включает в себя контент, который поможет вам стать лучшим веб разработчиком. Вы можете прочесть его бесплатно онлайн, купить экземпляр в Amazon, или пройтись с автором по онлайн курсу пошагово. После окончания курса, вы сможете перейти к Django и создавать более масштабные веб приложения.

#6: Создание блокчейна

Хотя блокчейн в основном разрабатывается как финансовая технология, его можно применять во многих других областях. Блокчейны можно применять практически во всех транзакциях: от сделок с недвижимостью, до передач медицинских отчетов.

Вы можете получить лучшее представление о том, как это работает, построив свой блокчейн! Руководство Hackernoon поможет вам реализовать блокчейн с нуля. К концу проекта, вы получите глубокое представление того, как работает эта технология транзакций.

Вы будете работать с HTTP клиентами и библиотекой requests. После установки веб-фреймворка Flask, вы сможете использовать запросы HTTP и взаимодействовать со своим блокчейном в интернете.

Помните, блокчейн – это не только для фанатов криптовалюты. Построив такой самим, вы легко найдете креативный способ реализовать эту технологию в интересующей вас области.

#7: Разбираемся с лентой Twitter

Интересует постройка веб приложений, но не хватает уверенности, чтобы начать мега-проект? Не беспокойтесь, мы кое-что подготовили для вас. С нами вы сможете научиться создавать простое веб приложение всего за несколько часов.

Боб Белдерброс делится кейсом, где он создал 40th PyBites Code Challenge, в котором участникам нужно было построить простое веб приложение для лучшей навигации по ленте новостей Daily Python Tip в Твиттере. Вы можете пройтись по результатам данного челенджа и ознакомиться с кодом.

Вместо Flask, вы будете использовать микро веб-фреймворк Bottle. Он славится тем, что является слабо зависимым решением для быстрого создания приложений. Так как он был разработан таким образом, чтобы быть легким и простым в использовании, вы сможете получить свое приложение практически мгновенно.
Вы также сможете работать с модулем Tweepy, чтобы загружать данные из API Твиттера. Вы сможете хранить данные в базе SQLAlchemy или Peewee, так что заодно получите небольшую практику в запросах SQL.

#8: Играйте в PyGames

Этот раздел для тех, кто хочет весело провести время. Python может быть использован для написания различных аркадных игр, адвенчур и пазлов, на разработку которых уйдет всего несколько дней. К классическим играм, типа пинг-понга вы сможете перейти, когда освоите новые навыки программирования.

Библиотека Pygame заметно упрощает разработку собственных игр. Он включает в себя практически все необходимое, чтобы вы могли приступить к разработке игр.

Pygame совершенно бесплатный и находится в открытом доступе. Он включает в себя библиотеки компьютерной графики и работы со звуком, которые вы можете использовать для внедрения интерактивного функционала в ваше приложение.

Вам доступны десятки игр, которые вы можете создать при помощи библиотеки. Что-бы вы не хотели придумать, чувствуйте себя комфортно и делитесь своими работами в сообществе Pygame!

#9: Выберите свое собственное приключение

Если вам больше по духу повествование, то у вас все еще масса инструментов, чтобы создать нечто крутое в Python.
Язык очень прост для написания, что делает его идеальной средой для разработки интерактивного чтива. С этим бесплатным руководством, вы сможете пошагово ознакомиться с написанием текстовых игр в Python.

Руководство подразумевает базовое понимание программирования в Python, и помогает проложить мост между тем, что вы уже знаете и неизведанными землями для построения приложения.

Если вы хотите, чтобы ваша история вышла на новый уровень, вы можете использовать движок, вроде RenPy, чтобы добавить звуки и изображения в вашу игру, создав визуальную новеллу с полным погружением. (После этого, вы можете выложить игру в Steam и посмотреть, как она расходится! Лучший способ получить отзыв о вашей работе – создать собственный релиз на мировом рынке.)

#10: Скажите “Привет, мир!” машинному обучению

Машинное обучение может быть фундаментальной областью в понимании искусственного интеллекта. Однако, в этой сфере легко запутаться, так как она постоянно развивается и меняется.
К счастью, в вашем распоряжении имеются онлайн ресурсы, которые могут помочь освоиться, перед тем как нырнуть с головой в мир под названием data science. Это руководство создано Джейсоном Браунли, и является хорошим примером введением в использование Python для машинного обучения.

Вы пройдетесь по ряду базовых алгоритмов машинного обучения, как и по библиотекам Python, которые помогут вам в составлении прогнозов.

Руководство очень простое и в нем легко ориентироваться. Вы можете окончить его всего за несколько часов. По окончанию курса, у вас будет общее представление о том, как использовать Python в науке данных.

Когда вы будете уверены в том, что можно нырять с головой, можете ознакомиться с этими руководствами, где вы сможете научиться анализировать отпечатки, создавать визуализации, распознавать речь и лица, и все это в Python!

#11: Бросаем вызов!

Если вы не уверены в том, что готовы окунаться в некоторые крупные проекты, упомянутые ранее, при этом мелкие вас не очень интересуют, вы можете думать: а чем еще можно заняться?

Кодерские задачки могут помочь вам попрактиковаться в навыках работы в Python и получить поверхностное представление обо всем спектре вещей, которые вы можете делать в Python,
Проще говоря: вам предоставят проблему, и вам нужно найти решение, в котором используется Python.

У вас будет шанс разработать решения, которые имеют смысл для вас, при этом у вас есть возможность углубиться в язык Python при помощи подсказок. Так вы получите представление о том, какие модули вам нужно импортировать, чтобы решить проблему.

Кодовые челенджы – это хороший способ освоить наибольшее количество библиотек, методов и фреймворков. Вы гарантированно найдете что-нибудь, что зацепит ваш интерес, и захотите уделять этому свободное время. Вы можете вернуться к этому списку и найти то, что зажгло в вас интерес, когда вы использовали это в одном из челенджей.

Чтобы начать, попробуйте одно из следующих, чтобы оценить свои силы:

  • Python Challenge. Более 20 доступных уровней. Создавайте простые скрипты в Python, чтобы решить уровень. По интернету есть разбросанные подсказки, но старайтесь искать решение самостоятельно!
  • PyBites Code Challenge. Включает в себя 50 задач, и количество растет! Эти задачи направлены на то, чтобы вы научились работать в Python для создания приложений, которые будут решать определенные проблемы.

Если вы предпочитаете программировать в таких задачах самостоятельно вместо пошаговых инструкций, то не будет лишним иметь под рукой вспомогательный ресурс.

Книга Python Tricks – это отличный источник информации, который поможет при работе с задачами. В книге рассматриваются малоизвестные части Python, на основании которых и формируются задачи.

Чего (скорее всего) не стоит делать в Python?

Очевидно, что Python – чрезвычайно универсальный язык, с которым вы можете делать массу вещей. Но вы не можете делать буквально всё. Фактически, есть определенные сферы, на которые Python не рассчитан.

С точки зрения интерпретируемого языка, у Python есть проблемы со взаимодействия с низкоуровневыми устройствами, такими как драйверами устройств. Например, у вас будут проблемы, если вы захотите написать операционную систему только на Python. Вам лучше связать его с С или С++ для низкоуровневых приложений.

Однако, даже это может быть проблемой не долго. В качестве подтверждения гибкости Python, есть люди, которые работают над проектами, которые расширяют юзабилити Python для низкоуровневых взаимодействий. MicroPython – это один из таких проектов, разрабатывающих низкоуровневые возможности Python.

Что если вашей идеи нет в этом списке?

Ничего страшного! Этот список вряд ли можно назвать исчерпывающим: существует огромное количество других инструментов и приложений, которые вы можете построить в Python, которые мы не рассмотрели в данной статье. Не думайте, что ваши идеи должны как-либо ограничиваться данным списком. Это просто база, с которой вы можете начать.

В этом видео вы можете почерпнуть несколько идей из других проектов, под которые Python хорошо заточен. Вы также можете ознакомиться с данным постом в блоге, автор которого подсказывает, где найти вдохновение для новых проектов Python.
Наконец, вы вольны искать и находить проекты, которые вам интересны.

Что делать дальше?

Ну, вот и все! Одиннадцать путей от новичка в Python до прожженного питониста!
Неважно, с чего вы хотите начать, вам открыты бесчисленные проспекты для разработки ваших навыков программирования. Начинайте с чего угодно! Родилась идея, которой нет в этом списке? Поделитесь в комментариях! Вы можете предложить идеальный проект для программиста-побратима.

Если вы застряли и ищете толчок в нужном направлении, поговорите об этом! Программирование не обязательно должно быть одиночным делом.

Если вы ищете способ задать вопрос и получить быстрый ответ от профессионалов – Python Форум всегда свободен. Это частное сообщество поможет вам найти контакт с теми, кто поможет вам пройти через возникшие стены, на которые вы наткнулись, работая в Pyhton.

Мастер Йода рекомендует:  Используем PHP-сессии в Wordpress
Добавить комментарий